精英家教网 > 高中数学 > 题目详情
3.已知函数y=$\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x,求函数的振幅、角速度、初相位.

分析 把函数化为y=Asin(ωx+φ)的形式,即可得出函数的振幅、角速度与初相位.

解答 解:∵函数y=$\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x
=cos$\frac{π}{3}$sin2x+sin$\frac{π}{3}$cos2x
=sin(2x+$\frac{π}{3}$),
∴函数y的振幅为A=1,
角速度为ω=2,
初相位为φ=$\frac{π}{3}$.

点评 本题考查了三角函数y=Asin(ωx+φ)的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图所示,已知M,N是椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1上两动点,且直线OM与ON的斜率之积为-$\frac{1}{2}$(其中O为坐标原点),若点P满足$\overrightarrow{OP}$=$\overrightarrow{OM}$+2$\overrightarrow{ON}$.问:是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值.若存在,求F1,F2的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果a,b,c∈R,那么“b2>4ac”是“方程ax2+bx+c=0有两个不等实根”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知角α的终边经过点P(-1,3),则2sinα+cosα=(  )
A.$\frac{\sqrt{10}}{2}$B.$\frac{\sqrt{10}}{10}$C.$-\frac{7\sqrt{10}}{10}$D.$-\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=cosx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的值域为[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-ax+5,x≤1}\\{1+\frac{1}{x},x>1}\end{array}\right.$在定义域R上不是单调函数,则a的取值范围是a>4或a<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数f(x)=sin(ωx+φ)(ω>0.|φ|<$\frac{π}{2}$)的图象部分如图所示.
(1)求f(x)的解析式;
(2)说明y=f(x)的图象是由y=sinx的图象经过怎么样的变化得到的?(必须写清楚变化过程才能得分)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.△ABC中,tanA=$\frac{1}{3}$,B=$\frac{π}{4}$,若椭圆E以AB为焦距,且过点C,则椭圆E的离心率是$\frac{\sqrt{10}-\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.老师给出问题:“设函数f(x)的定义域是(0,1),且满足:①对于任意的x∈(0,1),f(x)>0;②对于任意的x1,x2∈(0,1),恒有$\frac{{f({x_1})}}{{f({x_2})}}+\frac{{f(1-{x_1})}}{{f(1-{x_2})}}$≤2.请同学们对函数f(x)进行研究”.经观察,同学们提出以下几个猜想:
甲同学说:f(x)在$(0,\frac{1}{2}]$上递减,在$[\frac{1}{2},1)$上递增;
乙同学说:f(x)在$(0,\frac{1}{2}]$上递增,在$[\frac{1}{2},1)$上递减;
丙同学说:f(x)的图象关于直线x=$\frac{1}{2}$对称;
丁同学说:f(x)肯定是常函数.
你认为他们的猜想中正确的猜想个数有(  )
A.3个B.2个C.1个D.0个

查看答案和解析>>

同步练习册答案