(本小题满分12分)
已知.
(Ⅰ)若在上为增函数,求实数a的取值范围;
(Ⅱ)当常数时,设,求在上的最大值和最小值.
科目:高中数学 来源: 题型:解答题
设二次函数的图像过原点,,
的导函数为,且,
(1)求函数,的解析式;
(2)求的极小值;
(3)是否存在实常数和,使得和若存在,求出和的值;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分13分)
函数.
(1)求证函数在区间上存在唯一的极值点,并用二分法求函数取得极值时相应的近似值(误差不超过);(参考数据,,)
(2)当时,若关于的不等式恒成立,试求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数y=f(x)是定义在区间[-,]上的偶函数,且
x∈[0,]时,
(1)求函数f(x)的解析式;
(2)若矩形ABCD的顶点A,B在函数y=f(x)的图像上,顶点C,D在x轴上,求矩形ABCD面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com