精英家教网 > 高中数学 > 题目详情
5.命题p:甲的数学成绩不低于100分,命题q:乙的数字成绩低于100分,则p∨(¬q)表示(  )
A.甲、乙两人数学成绩都低于100分
B.甲、乙两人至少有一人数学成绩低于100分
C.甲、乙两人数学成绩都不低于100分
D.甲、乙两人至少有一人数学成绩不低于100分

分析 根据命题p和¬q的意义,即可得到结论.

解答 解:∵命题p:甲的数学成绩不低于100分,命题q:乙的数字成绩低于100分
∴命题¬q表示“乙的数字成绩不低于100分”,
∴命题(p)∨(¬q)表示甲、乙两人至少有一人数学成绩不低于100分,
故选:D.

点评 本题主要考查复合命题与简单命题之间的关系,正确理解命题的意义是解决本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知$\frac{si{n}^{2}θ+4}{cosθ+1}$=2,则(cosθ+1)(sinθ+1)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平行四边形ABCD中,E,F分别是CD和BC的中点,若$\overrightarrow{AE}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$(x,y∈R),则2x+y=2;若$\overrightarrow{AC}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{AF}$(λ,μ∈R),则3λ+3μ=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过点(-3,-1)且与直线x-2y+3=0平行的直线方程是(  )
A.2x+y+7=0B.2x-y+5=0C.x-2y+1=0D.x-2y+5=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数给出下列说法,其中正确命题的序号为①②④.
(1)命题“若α=$\frac{13π}{6}$,则cosα=$\frac{\sqrt{3}}{2}$”的逆否命题;
(2)命题p:?x0∈R,使sinx0>1,则¬p:?x∈R,sinx≤1;
(3)“φ=$\frac{π}{2}$+2kπ(k∈Z)”是“函数若y=sin(2x+φ)为偶函数”的充要条件;
(4)命题p:“$?x∈(0,\frac{π}{2})$,使$sinx+cosx=\frac{1}{2}$”,命题q:“在△ABC中,若使sinA>sinB,则A>B”,那么命题 (?p)∧q为真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知△ABC的外接圆半径为2,D为该圆上一点,且$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{AD}$,则△ABC的面积的最大值为(  )
A.3B.4C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足:a1=2,an+1=$\left\{\begin{array}{l}{\frac{1}{2}{a}_{n},n为偶数}\\{{a}_{n}+1,n为奇数}\end{array}\right.$,若bn=a2n-1-1.
(Ⅰ)求证:数列{bn}是等比数列;
(Ⅱ)若数列{an}的前n项和为Sn,求S2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知x与y之间的一组数据:
x34557
y24568
则y与x的线性回归方程为y=bx+a必过(  )
A.(5,5)B.(4.5,5)C.(4.8,5)D.(5,6)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过点A(1,2)且平行于直线3x+2y-1=0的直线方程为(  )
A.2x-3y+4=0B.3x-2y+1=0C.2x+3y-8=0D.3x+2y-7=0

查看答案和解析>>

同步练习册答案