【题目】已知函数.
(1)判断的奇偶性,并证明;
(2)用定义证明函数在上单调递减;
(3)若,求的取值范围.
科目:高中数学 来源: 题型:
【题目】现对一块边长8米的正方形场地ABCD进行改造,点E为线段BC的中点,点F在线段CD或AD上(异于A,C),设(米),的面积记为(平方米),其余部分面积记为(平方米).
(1)当(米)时,求的值;
(2)求函数的最大值;
(3)该场地中部分改造费用为(万元),其余部分改造费用为(万元),记总的改造费用为W(万元),求W取最小值时x的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).M是曲线上的动点,将线段OM绕O点顺时针旋转得到线段ON,设点N的轨迹为曲线.以坐标原点O为极点,轴正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2)在(1)的条件下,若射线与曲线分别交于A, B两点(除极点外),且有定点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司的电子新产品未上市时,原定每件售价100元,经过市场调研发现,该电子新产品市场潜力很大,该公司决定从第一周开始销售时,该电子产品每件售价比原定售价每周涨价4元,5周后开始保持120元的价格平稳销售,10周后由于市场竞争日益激烈,每周降价2元,直到15周结束,该产品不再销售.
(Ⅰ)求售价(单位:元)与周次()之间的函数关系式;
(Ⅱ)若此电子产品的单件成本(单位:元)与周次之间的关系式为,,,试问:此电子产品第几周的单件销售利润(销售利润售价成本)最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在上的偶函数和奇函数,且.
(1)求函数,的解析式;
(2)设函数,记(,).探究是否存在正整数,使得对任意的,不等式恒成立?若存在,求出所有满足条件的正整数的值;若不存在,请说明理由.
参考结论:设均为常数,函数的图象关于点对称的充要条件是.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AOB是一块半径为r的扇形空地,.某单位计划在空地上修建一个矩形的活动场地OCDE及一矩形停车场EFGH,剩余的地方进行绿化.若,设
(Ⅰ)记活动场地与停车场占地总面积为,求的表达式;
(Ⅱ)当为何值时,可使活动场地与停车场占地总面积最大.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com