精英家教网 > 高中数学 > 题目详情

【题目】已知圆Cx2y2+2x-4y+3=0.

(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.

(2)从圆C外一点P(x1y1)向该圆引一条切线,切点为MO为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.

【答案】(1)y=(2±)xx+y+1=0x+y-3=0(2)

【解析】试题分析:(1)利用待定系数法给出切线的截距式方程,然后再利用圆心到切线的距离等于半径列方程求系数即可;

(2)可先利用PM(PM可用P点到圆心的距离与半径来表示)=PO,求出P点的轨迹(求出后是一条直线),然后再将求PM的最小值转化为求直线上的点到原点的距离PO之最小值.

试题解析:

 (1)将圆C整理得(x+1)2+(y-2)2=2.

①当切线在两坐标轴上的截距为零时,设切线方程为y=kx,

∴d=,即k2-4k-2=0,解得k=2±.∴y=(2±)x;

②当切线在两坐标轴上的截距不为零时,设切线方程为x+y-a=0,

∴d=,即|a-1|=2,解得a=3或-1.∴x+y+1=0x+y-3=0.

综上所述,所求切线方程为y=(2±)xx+y+1=0x+y-3=0.

(2)∵|PO|=|PM|,∴x+y=(x1+1)2+(y1-2)2-2,即2x1-4y1+3=0,即点P在直线l:2x-4y+3=0上.当|PM|取最小值时,即|OP|取得最小值,此时直线OP⊥l,∴直线OP的方程为:2x+y=0,解得方程组∴P点坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】第十三届全运会将2017年9月在天津举行,组委会在2017年1月对参加接待服务的10名宾馆经理进行为期半月的培训,培训结束,组织了一次培训结业测试,10人考试成绩如下(满分100分):

75 84 65 90 88 95 78 85 98 82

(Ⅰ)以成绩的十位为茎个位为叶作出本次结业成绩的茎叶图,并计算平均成绩与成绩的中位数

(Ⅱ)从本次成绩在85分以上(含85分)的学员中任选2人,2人成绩都在90分以上(含90分)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥S ABCD中,平面SAD⊥平面ABCD.四边形ABCD为正方形,且点PAD的中点,点QSB的中点.

(1)求证:CD⊥平面SAD

(2)求证:PQ∥平面SCD

(3)若SASD,点MBC的中点,在棱SC上是否存在点N,使得平面DMN⊥平面ABCD?若存在,请说明其位置,并加以证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,一个动圆截直线所得的弦长分别为8,4.

(1)求动圆圆心的轨迹方程;

(2)在轨迹上是否存在这样的点:它到点的距离等于到点的距离?若存在,求出这样的点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)函数,若的极值点,求的值并讨论的单调性;

(2)函数有两个不同的极值点,其极小值为为,试比较的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,A、B两点都在河的对岸(不可到达),为了测量A、B两点间的距离,选取一条基线CD,A、B、C、D在一平面内.测得:CD=200m,∠ADB=∠ACB=30°,∠CBD=60°,则AB=(

A. m
B.200 m
C.100 m
D.数据不够,无法计算

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 <β<α< ,cos(α﹣β)= ,sin(α+β)=﹣ ,则sinα+cosα的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1F2,线段OF1OF2的中点分别为B1B2,且△AB1B2是面积为1的直角三角形.

(1)求该椭圆的离心率和标准方程;

(2)点M为该椭圆上任意一点,求|MA|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1, ), =(sinx,cosx),设函数f(x)=
(1)求函数f(x)的最小正周期和最大值;
(2)设锐角△ABC的三个内角A,B,C的对边分别为a,b,c,若c= ,cosB= ,且f(C)= ,求b.

查看答案和解析>>

同步练习册答案