【题目】已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
【答案】(1)y=(2±)x或x+y+1=0或x+y-3=0(2)
【解析】试题分析:(1)利用待定系数法给出切线的截距式方程,然后再利用圆心到切线的距离等于半径列方程求系数即可;
(2)可先利用PM(PM可用P点到圆心的距离与半径来表示)=PO,求出P点的轨迹(求出后是一条直线),然后再将求PM的最小值转化为求直线上的点到原点的距离PO之最小值.
试题解析:
(1)将圆C整理得(x+1)2+(y-2)2=2.
①当切线在两坐标轴上的截距为零时,设切线方程为y=kx,
∴d==,即k2-4k-2=0,解得k=2±.∴y=(2±)x;
②当切线在两坐标轴上的截距不为零时,设切线方程为x+y-a=0,
∴d==,即|a-1|=2,解得a=3或-1.∴x+y+1=0或x+y-3=0.
综上所述,所求切线方程为y=(2±)x或x+y+1=0或x+y-3=0.
(2)∵|PO|=|PM|,∴x+y=(x1+1)2+(y1-2)2-2,即2x1-4y1+3=0,即点P在直线l:2x-4y+3=0上.当|PM|取最小值时,即|OP|取得最小值,此时直线OP⊥l,∴直线OP的方程为:2x+y=0,解得方程组得∴P点坐标为.
科目:高中数学 来源: 题型:
【题目】第十三届全运会将于2017年9月在天津举行,组委会在2017年1月对参加接待服务的10名宾馆经理进行为期半月的培训,培训结束,组织了一次培训结业测试,10人考试成绩如下(满分100分):
75 84 65 90 88 95 78 85 98 82
(Ⅰ)以成绩的十位为茎、个位为叶作出本次结业成绩的茎叶图,并计算平均成绩与成绩的中位数 ;
(Ⅱ)从本次成绩在85分以上(含85分)的学员中任选2人,2人成绩都在90分以上(含90分)的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥S ABCD中,平面SAD⊥平面ABCD.四边形ABCD为正方形,且点P为AD的中点,点Q为SB的中点.
(1)求证:CD⊥平面SAD.
(2)求证:PQ∥平面SCD.
(3)若SA=SD,点M为BC的中点,在棱SC上是否存在点N,使得平面DMN⊥平面ABCD?若存在,请说明其位置,并加以证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,一个动圆截直线和所得的弦长分别为8,4.
(1)求动圆圆心的轨迹方程;
(2)在轨迹上是否存在这样的点:它到点的距离等于到点的距离?若存在,求出这样的点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,A、B两点都在河的对岸(不可到达),为了测量A、B两点间的距离,选取一条基线CD,A、B、C、D在一平面内.测得:CD=200m,∠ADB=∠ACB=30°,∠CBD=60°,则AB=( )
A. m
B.200 m
C.100 m
D.数据不够,无法计算
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为1的直角三角形.
(1)求该椭圆的离心率和标准方程;
(2)点M为该椭圆上任意一点,求|MA|的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(1, ), =(sinx,cosx),设函数f(x)=
(1)求函数f(x)的最小正周期和最大值;
(2)设锐角△ABC的三个内角A,B,C的对边分别为a,b,c,若c= ,cosB= ,且f(C)= ,求b.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com