精英家教网 > 高中数学 > 题目详情
边长为a的菱形ABCD中锐角A=θ,现沿对角线BD折成60°的二面角,翻折后|AC|=
3
2
a,则锐角A是(  )
分析:先确定二面角C-BD-A的平面角,再计算AO的长,即可求得结论.
解答:解:取BD的中点O,连接OC、OA,则∠COA为二面角C-BD-A的平面角,即∠COA=60°

∵|AC|=
3
2
a,∴|AO|=
3
2
a
∵菱形ABCD中AD=a,∴∠ADB=
π
3

∴∠A=
π
3

故选C.
点评:本题考查二面角的平面角,考查学生的计算能力,确定二面角的平面角是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在边长为a的菱形ABCD中,∠ABC=60°,PC⊥面ABCD,E,F是PA和AB的中点.
(1)求证:EF||平面PBC;
(2)求E到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知四棱锥P-ABCD的底面是边长为a的菱形,∠ABC=120°,又PC⊥平面ABCD,PC=a,E是PA的中点.
(1)求证:平面EBD⊥平面ABCD;
(2)求直线PB与直线DE所成的角的余弦值;
(3)设二面角A-BE-D的平面角为θ,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥P-ABCD的底面是边长为a的菱形,∠ABC=60°,PC⊥平面ABCD,PC=a,E为PA中点,
(1)求证:平面EDB⊥平面ABCD;
(2)求点E到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在边长为a的菱形ABCD中,∠ABC=60°,PC⊥面ABCD,PC=2a,E、F分别是PA和AB的中点.
(1)求证:EF∥面PBC;
(2)求证:平面PDB⊥平面PAC;
(3)求EF与平面PAC所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,斜三棱柱ABC-A1B1C1的底面是直角三角形,AC⊥CB,∠ABC=45°,侧面A1ABB1是边长为a的菱形,且垂直于底面ABC,∠A1AB=60°,E、F分别是AB1、BC的中点.
(1)求证EF∥平面A1ACC1
(2)求EF与侧面A1ABB1所成的角.

查看答案和解析>>

同步练习册答案