精英家教网 > 高中数学 > 题目详情
5.给出命题p:a(1-a)>0;命题q:y=x2+(2a-3)x+1与x轴交于不同的两点.如果命题“p∨q”为真,“p∧q”为假,求a的取值范围.

分析 先求出命题p,q为真命题时对应的等价条件,然后利用p∧q为假命题,p∨q为真命题,确定a的取值范围.

解答 解:命题p为真?a(1-a)>0?0<a<1-------------------------------(2分)
命题q为真$?△={(2a-3)^2}-4>0?a<\frac{1}{2}或a>\frac{5}{2}$,-----------------(4分)
命题“p∨q”为真,“p∧q”为假?p,q中一真一假,-----------------(6分)
当p真q假时,$\left\{{\begin{array}{l}{0<a<1}\\{\frac{1}{2}≤a≤\frac{5}{2}}\end{array}}\right.$,得$\frac{1}{2}≤a<1$,---------------------------(8分)
当p假q真时,$\left\{{\begin{array}{l}{a≤0或a≥1}\\{a<\frac{1}{2}或a>\frac{5}{2}}\end{array}}\right.$,得$a≤0或a>\frac{5}{2}$,--------------------(10分)
所以a的取值范围是$(-∞,0]∪[\frac{1}{2},1)∪(\frac{5}{2},+∞)$-----------------------------------------(12分)

点评 本题考查了复合命题的真假判断以及应用,要求熟练掌握复合命题与简单命题的真假关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.函数$y={log_a}{x^2}$的零点为(  )
A.±1B.(±1,0)C.1D.(1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合M={-1,0,1},N={-2,-1,0,2},则M∩N=(  )
A.{0}B.{1,0}C.(-1,0)D.{-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.三个数a=0.32,b=0.32.1,c=20.3的大小关系是(  )
A.a<b<cB.a<c<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.三棱锥SABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为(  )
A.4$\sqrt{2}$B.$\sqrt{19}$C.$\sqrt{20}$D.$4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合 M={x||x|≤2,x∈R},N={x|x2≤4,x∈N},则(  )
A.M=NB.M?NC.M?ND.M∩N=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知椭圆:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$和圆:${x^2}+{y^2}={(\frac{b}{2}+c)^2}({c^2}={a^2}-{b^2})$有四个不同的公共点,则椭圆的离心率的取值范围是(  )
A.$(\frac{{\sqrt{5}}}{5},\frac{3}{5})$B.$(\frac{{\sqrt{2}}}{5},\frac{{\sqrt{5}}}{5})$C.$(\frac{{\sqrt{2}}}{5},\frac{3}{5})$D.$(0,\frac{{\sqrt{5}}}{5})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{2}$ax2-(a+1)x+lnx(a>0),x=$\frac{1}{4}$是函数的一个极值点.
(1)求实数a的值;
(2))定义:定义域为M的函数y=h(x)在点(x0,f(x0))处的切线方程为l:y=g(x),若$\frac{h(x)-g(x)}{{x-{x_0}}}$>0在M内恒成立,则称P为函数y=h(x)的“类对称点”.问:函数y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=loga|x+1|在(-1,0)上是增函数,则f(x)在(-∞,-1)上是(  )
A.函数值由负到正且为增函数B.函数值恒为正且为减函数
C.函数值由正到负且为减函数D.没有单调性

查看答案和解析>>

同步练习册答案