精英家教网 > 高中数学 > 题目详情

【题目】下列命题中,错误命题是

A. ,则的逆命题为真

B. 线性回归直线必过样本点的中心

C. 在平面直角坐标系中到点的距离的和为的点的轨迹为椭圆

D. 在锐角中,有

【答案】C

【解析】

由四种命题的真假判断A的正误;回归直线方程的性质判断B的正误;椭圆的定义判断C的正误;三角形的性质以及正弦函数的单调性判断D的正误;

选项A:“若,则ab0”的逆命题为:若ab0,则显然是真命题;

选项B:线性回归直线方程必过样本点的中心,所以B正确;

选项C:在平面直角坐标系中到点(10)和(01)的距离的和为的点的轨迹为线段,所以C不正确.

选项D:在锐角△ABC中,有A+BAB,所以sinAsinB)=cosB>0,可得sin2Acos2B,所以D正确;

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示多面体,其底面为矩形且,四边形为平行四边形,点在底面内的投影恰好是的中点.

(1)已知为线段的中点,证明:平面

(2)若二面角大小为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点长轴长.

1)设直线交椭圆两点,求线段的中点坐标.

2)求过点的直线被椭圆所截弦的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD的底面ABCD为正方形,EF分别是棱PCAB的中点.

1)求证:平面PAD

2)若,求直线EF与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一块半径为20米,圆心角的扇形展示台,展示台分成了四个区域:三角形,弓形,扇形和扇形(其中.某次菊花展依次在这四个区域摆放:泥金香、紫龙卧雪、朱砂红霜、朱砂红霜.预计这三种菊花展示带来的日效益分别是:泥金香50/,紫龙卧雪30/,朱砂红霜40/.

1)设,试建立日效益总量关于的函数关系式;

2)试探求为何值时,日效益总量达到最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,函数

1)求函数的单调递减区间;

2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某地区年龄在25~55岁的人员中,随机抽出100人,了解他们对今年两会的热点问题的看法,绘制出频率分布直方图如图所示,则下列说法正确的是( )

A. 抽出的100人中,年龄在40~45岁的人数大约为20

B. 抽出的100人中,年龄在35~45岁的人数大约为30

C. 抽出的100人中,年龄在40~50岁的人数大约为40

D. 抽出的100人中,年龄在35~50岁的人数大约为50

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于方程为的曲线给出以下三个命题:

1)曲线关于原点对称;(2)曲线关于轴对称,也关于轴对称,且轴和轴是曲线仅有的两条对称轴;(3)若分别在第一、第二、第三、第四象限的点,都在曲线上,则四边形每一条边的边长都大于2

其中正确的命题是(

A.1)(2B.1)(3C.2)(3D.1)(2)(3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是平面直角坐标系中两两不同的四点,,,,则称调和分割.已知平面上的点调和分割点,则下列说法正确的是

A. 可能线段的中点

B. 可能线段的中点

C. 可能同时在线段

D. 不可能同时在线段的延长线上

查看答案和解析>>

同步练习册答案