精英家教网 > 高中数学 > 题目详情

甲、乙两人参加普法知识竞赛,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人各抽一道(不重复).
(1)甲抽到选择题,乙抽到判断题的概率是多少?
(2)甲、乙二人中至少有一人抽到选择题的概率是多少?

(1)甲抽到选择题,乙抽到判断题的概率是.
(2)甲、乙二人中至少有一人抽到选择题的概率是.

解析试题分析:
思路分析:(1)按古典概型概率的计算方法,确定基本事件空间事件数,确定事件“甲抽到选择题,乙抽到判断题”含有的基本事件数,然后计算比值。
(2)利用“甲、乙二人中至少有一人抽到选择题”的对立事件“甲、乙二人都抽到判断题”计算概率,能起到“化繁为简”的作用。
解:(1)甲、乙两人从10道题中不重复各抽一道,共有种抽法      3分
记“甲抽到选择题,乙抽到判断题”为事件,则事件含有的基本事件数为
                         5分
                    7分
甲抽到选择题,乙抽到判断题的概率是.           8分
(2)记“甲、乙二人中至少有一人抽到选择题”为事件,其对立事件为“甲、乙二人都抽到判断题”,记为事件,则事件含有的基本事件数为  10分

                   12分
甲、乙二人中至少有一人抽到选择题的概率是.        13分
考点:古典概型概率的计算,对立事件概率计算公式。
点评:中档题,对事件的认识与理解,是准确解题的基础,准确计算事件数是解题的关键。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

一个盒子中装有分别标有数字1、2、3、4的4个大小、形状完全相同的小球,现从中有放回地随机抽取2个小球,抽取的球的编号分别记为,记.
(Ⅰ)求取最大值的概率;
(Ⅱ)求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某经销商试销A、B两种商品一个月(30天)的记录如下:

日销售量(件)
 
0
 
1
 
2
 
3
 
4
 
5
 
商品A的频数
 
2
 
5
 
7
 
7
 
5
 
4
 
商品B的频数
 
4
 
4
 
6
 
8
 
5
 
3
 
若售出每种商品1件均获利40元,将频率视为概率。
(Ⅰ)求B商品日销售量不超过3件的概率;
(Ⅱ)由于某种原因,该商家决定只选择经销A、B商品的一种,你认为应选择哪种商品,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市准备从7名报名者(其中男5人,女3人)中选3人参加三个副局长职务竞选.
(1)设所选3人中女副局长人数为,求的分布列及数学期望.
(2)若选派三个副局长依次到三个局商上任,求局是男局长的情况下,局是女副局长的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某小组共有五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如下表所示:

 
A
B
C
D
E
身高
1.69
1.73
1.75
1.79
1.82
体重指标
19.2
25.1
18.5
23.3
20.9
(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率;
(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
一个不透明的袋子中装有4个形状相同的小球,分别标有不同的数字2,3,4,,现从袋中随机摸出2个球,并计算摸出的这2个球上的数字之和,记录后将小球放回袋中搅匀,进行重复试验。记A事件为“数字之和为7”.试验数据如下表

摸球总次数
10
20
30
60
90
120
180
240
330
450
“和为7”出现的频数
1
9
14
24
26
37
58
82
109
150
“和为7”出现的频率
0.10
0.45
0.47
0.40
0.29
0.31
0.32
0.34
0.33
0.33
(参考数据:
(Ⅰ)如果试验继续下去,根据上表数据,出现“数字之和为7”的频率将稳定在它的概率附近。试估计“出现数字之和为7”的概率,并求的值;
(Ⅱ)在(Ⅰ)的条件下,设定一种游戏规则:每次摸2球,若数字和为7,则可获得奖金7元,否则需交5元。某人摸球3次,设其获利金额为随机变量元,求的数学期望和方差。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的列联表:
性别与看营养说明列联表 单位: 名

 
 

 

 
总计
 
看营养说明
 
50
 
30
 
80
 
不看营养说明
 
10
 
20
 
30
 
总计
 
60
 
50
 
110
 
(1)从这50名女生中按是否看营养说明采取分层抽样,抽取一个容量为10的样本,问样本中看与不看营养说明的女生各有多少名?
(2)根据以上列联表,能否在犯错误的概率不超过0.01的前提下认为性别与是否看营养说明之间有关系?
下面的临界值表供参考:

 
0.15
 
0.10
 
0.05
 
0.025
 
0.010
 
0.005
 
0.001
 

 
2.072
 
2.706
 
3.841
 
5.024
 
6.635
 
7.879
 
10.828
 
 (参考公式:,其中)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

“肇实,正名芡实,因肇庆所产之芡实颗粒大、药力强,故名。”某科研所为进一步改良肇实,为此对肇实的两个品种(分别称为品种A和品种B)进行试验.选取两大片水塘,每大片水塘分成n小片水塘,在总共2n小片水塘中,随机选n小片水塘种植品种A,另外n小片水塘种植B.
(1)假设n=4,在第一大片水塘中,种植品种A的小片水塘的数目记为,求的分布列和数学期望;
(2)试验时每大片水塘分成8小片,即n=8,试验结束后得到品种A和品种B在每个小片水塘上的每亩产量(单位:kg/亩)如下表:

 号码
1
2
3
4
5
6
7
8
品种A
101
97
92
103
91
100
110
106
品种B
115
107
112
108
111
120
110
113
分别求品种A和品种B的每亩产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市2010年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):
61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.
(1)完成频率分布表;
(2)作出频率分布直方图;
(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.
请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.

查看答案和解析>>

同步练习册答案