精英家教网 > 高中数学 > 题目详情
20.已知ab=$\frac{1}{4}$,a,b∈(0,1),则$\frac{1}{1-a}$+$\frac{2}{1-b}$的最小值为4+$\frac{4\sqrt{2}}{3}$.

分析 先根据条件消掉b,即将b=$\frac{1}{4a}$代入原式得$\frac{1}{1-a}$+$\frac{8a}{4a-1}$,再裂项并用贴“1”法,最后运用基本不等式求其最小值.

解答 解:因为ab=$\frac{1}{4}$,所以,b=$\frac{1}{4a}$,
因此,$\frac{1}{1-a}$+$\frac{2}{1-b}$=$\frac{1}{1-a}$+$\frac{2}{1-\frac{1}{4a}}$
=$\frac{1}{1-a}$+$\frac{8a}{4a-1}$=$\frac{1}{1-a}$+$\frac{2(4a-1)+2}{4a-1}$
=$\frac{1}{1-a}$+$\frac{2}{4a-1}$+2=2($\frac{1}{4a-1}$+$\frac{2}{4-4a}$)+2
=$\frac{2}{3}$($\frac{1}{4a-1}$+$\frac{2}{4-4a}$)[(4a-1)+(4-4a)]+2
=$\frac{2}{3}$[1+2+$\frac{4-4a}{4a-1}$+$\frac{2(4a-1)}{4-4a}$]+2
≥$\frac{2}{3}$(3+2$\sqrt{2}$)+2=4+$\frac{4\sqrt{2}}{3}$,
当且仅当:a=$\frac{1+2\sqrt{2}}{4+2\sqrt{2}}$,取“=”,
即,$\frac{1}{1-a}$+$\frac{2}{1-b}$的最小值为:4+$\frac{4\sqrt{2}}{3}$,
故答案为:4+$\frac{4\sqrt{2}}{3}$.

点评 本题主要考查了基本不等式在求最值问题中的应用,涉及消元,裂项,凑配,贴1等恒等变形,以及取等条件的确定,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若等比数列{an}满足a1+a3=5,且公比q=2,则a3+a5=20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在x≤0的条件下,求函数y=$\sqrt{8+2x-{x}^{2}}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,B(-c,0),C(c,0),AH⊥BC,垂足为H,且$\overrightarrow{BH}$=3$\overrightarrow{HC}$.又$\overrightarrow{AD}$=-4$\overrightarrow{DB}$,且A、D同在B、C为焦点的椭圆上,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列各式的值:
(1)cos$\frac{π}{5}$cos$\frac{2π}{5}$;
(2)tan$\frac{π}{12}$-$\frac{1}{tan\frac{π}{12}}$;
(3)sin50°(1+$\sqrt{3}$tan10°).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.我国1960年人口大约为8亿,到1980年底约为10亿,在这20年中年平均人口增长率为多少?(lg1.011=0.0049,lg2=0.3010)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在三棱锥P-ABC中,不能证明AP⊥BC的条件是(  )
A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PB
C.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设集合A={1,2,m2-m}.B={$\sqrt{{m}^{2}}$,1},C={x|x>lg$\frac{1-m}{{m}^{2}+1}$},B⊆A.
(1)求实数m的值;
(2)求A∩C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lg(x-1)+$\frac{1}{\sqrt{32-{2}^{x}}}$的定义域是集合A,函数g(x)=-4x+2x+1+3的值域是集合B.
(1)求集合A,B;
(2)设集合C={x|2m<x<m+2},若C⊆(A∩B),求实数m的取值范围.

查看答案和解析>>

同步练习册答案