精英家教网 > 高中数学 > 题目详情

【题目】

购买某种保险,每个投保人每年度向保险公司交纳保费元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为

)求一投保人在一年度内出险的概率

)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元)。

【答案】

15

【解析】

各投保人是否出险互相独立,且出险的概率都是,记投保的10 000人中出险的人数为

)记表示事件:保险公司为该险种至少支付10 000元赔偿金,则发生当且仅当2

························································································ 5

)该险种总收入为元,支出是赔偿金总额与成本的和。

支出

盈利

盈利的期望为······································· 9

知,

(元)。

故每位投保人应交纳的最低保费为15元。····················································· 12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,“大衍数列”:来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.下图是求大衍数列前项和的程序框图.执行该程序框图,输入,则输出的( )

A. 64 B. 68 C. 100 D. 140

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,离心率为

)求椭圆的方程.

)直线与椭圆交于两点,点是椭圆的右顶点.直线与直线分别与轴交于点两点,试问在轴上是否存在一个定点使得?若是,求出定点坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016高考新课标II,理15)有三张卡片,分别写有121323.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:我与丙的卡片上相同的数字不是1”,丙说:我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,

(1)相交于点,且平面,求实数的值;

(2)若, 求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)求直线的极坐标方程和曲线的直角坐标方程;

(2)若直线与曲线交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:

月份

1

2

3

4

5

违章驾驶员人数

120

105

100

90

85

(1)请利用所给数据求违章人数y与月份之间的回归直线方程+

(2)预测该路口7月份的不“礼让斑马线”违章驾驶员人数;

(3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下2列联表:

不礼让斑马线

礼让斑马线

合计

驾龄不超过1年

22

8

30

驾龄1年以上

8

12

20

合计

30

20

50

能否据此判断有97.5的把握认为“礼让斑马线”行为与驾龄有关?

参考公式及数据:,.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列推理合理的是(  )

A. 若函数yfx)是增函数,则f'x)>0

B. 因为abab∈R),则a+2ib+2ii是虚数单位)

C. A是三角形ABC的内角,若cosA0,则此三角形为锐角三角形

D. αβ是锐角△ABC的两个内角,则sinαcosβ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图公园里有一湖泊,其边界由两条线段和以为直径的半圆弧组成,其中为2百米,若在半圆弧,线段,线段上各建一个观赏亭,再修两条栈道,使. 记

(1)试用表示的长;

(2)试确定点的位置,使两条栈道长度之和最大.

查看答案和解析>>

同步练习册答案