精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=
3
acosB.
(Ⅰ)求角B的大小;
(Ⅱ)若b=3,sinC=2sinA,求△ABC的面积.
考点:正弦定理
专题:解三角形
分析:(Ⅰ)在△ABC中,由 bsinA=
3
acosB,利用正弦定理求得tanB的值,可得B的值.
(Ⅱ)由条件利用正弦定理得c=2a,再由余弦定理b2=a2+c2-2ac•cosB,求得a的值,可得c=2a的值,根据
△ABC的面积为
1
2
ac•sinB,计算求得结果.
解答: 解:(Ⅰ)在△ABC中,∵bsinA=
3
acosB,
∴由正弦定理可得 sinBsinA=
3
sinAcosB.
∵sinA≠0,∴sinB=
3
cosB,∴tanB=
3
,∴B=
π
3

(Ⅱ)∵sinC=2sinA,∴c=2a,
由余弦定理b2=a2+c2-2ac•cosB,即9=a2+4a2-2a•2a•cos
π
3

解得a=
3
,c=2a=2
3

故△ABC的面积为
1
2
ac•sinB=
3
3
2
点评:本题主要考查正弦定理、余弦定理的应用,根据三角函数的值求角,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义全集U的非空子集P的特征函数fp(x)=
1,x∈P
0,x∈UP
,这里∁UP表示集合P在全集U的补集.已知A,B均为全集U的非空子集,给出下列命题:
①若A⊆B,则对于任意x∈U,都有fA(x)≤fB(x);
②对于任意x∈U,都有fUA(x)=1-fA(x);
③对于任意x∈U,都有fA∩B(x)=fA(x)•fB(x);
④对于任意x∈U,都有fA∪B(x)=fA(x)+fB(x).
则正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

比较10、0.4-2.5、2-0.2、2.51.6的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲,乙,丙三位学生独立地解同一道题,甲做对的概率为
1
2
,乙、丙做对的概率分别为m和n(m>n),且三位学生是否做对相互独立.记ξ为这三位学生中做对该题的人数,其分布列为:
ξ  0  1  2  3
 P  
1
4
 a  b
1
24
(Ⅰ)求m,n的值;
(Ⅱ)记事件E={函数f(x)=-2x2+3ξx+1在区间[-1,1]上不单调},求P(E);
(Ⅲ)令λ=12E(ξ)-10,试计算
λ
(1-2|x|)dx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边分别是a、b、c,设平面向量
e1
=(2cosC,
c
2
-b)
e2
=(
1
2
a,1)
,且
e1
e2

(Ⅰ)求cos2A的值;
(Ⅱ)若a=2,则△ABC的周长L的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA⊥⊙O所在平面,AB是⊙O的直径,C是⊙O上一点,AE⊥PC,AF⊥PB,给出下列结论:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目标函数z=ax+by(a>0,b>0)的最大值为6,则
1
a
+
2
b
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设不等式组
x-4y≤-3
3x+5y≤25
x≥1
表示的平面区域为M,若直线l:y=k(x+1)上存在区域M内的点,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lnx2(  )
A、是偶函数且在(-∞,0)上单调递增
B、是偶函数且在(0,+∞)上单调递增
C、是奇函数且在(0,+∞)上单调递减
D、是奇函数且在(-∞,0)上单调递减

查看答案和解析>>

同步练习册答案