精英家教网 > 高中数学 > 题目详情

【题目】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

Ⅰ)由折线图看出,可用线性回归模型拟合yt的关系,请用相关系数加以说明;

Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.

附注:

参考数据:

≈2.646.

参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

【答案】(Ⅰ)答案见解析;(Ⅱ)答案见解析.

【解析】

试题分析:()根据相关系数的公式求出相关数据后,代入公式即可求得的值,最后根据值的大小回答即可;()准确求得相关数据,利用最小二乘法建立y关于t的回归方程,然后预测.

试题解析:()由折线图中数据和附注中参考数据得

.

因为的相关系数近似为0.99,说明的线性相关相当高,从而可以用线性回归模型拟合的关系.

)由及()得

.

所以,关于的回归方程为:.

2016年对应的代入回归方程得:.

所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正项等差数列的前项和为,若,且成等比数列.

(1)求的通项公式;

(2)设,记数列的前项和为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三角形ABC中,内角A,B,C所对边a,b,c成公比小于1的等比数列,且sinB+sin(A﹣C)=2sin2C.
(1)求内角B的余弦值;
(2)若b= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若样本的平均数是,方差是,则对样本,下列结论正确的是 ( )

A. 平均数为14,方差为5 B. 平均数为13,方差为25

C. 平均数为13,方差为5 D. 平均数为14,方差为2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示.已知两组技工在单位时间内加工的合格零件平均数都为

(1)分别求出mn的值;

(2)分别求出甲、乙两组技工在单位时间内加工的合格零件的方差,并由此分析两组技工的加工水平;

(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件个数之和大于18,则称该车间“质量合格”,求该车间“质量合格”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在钝角△ABC中,∠A为钝角,令 = = ,若 =x +y (x,y∈R).现给出下面结论:
①当x= 时,点D是△ABC的重心;
②记△ABD,△ACD的面积分别为SABD , SACD , 当x= 时,
③若点D在△ABC内部(不含边界),则 的取值范围是
④若 ,其中点E在直线BC上,则当x=4,y=3时,λ=5.
其中正确的有(写出所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:

(1)求分数在[120,130)内的频率;

(2)估计本次考试的中位数;

(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有5个大小相同的球,其中有2个白球,2个黑球,1个红球,现从袋中每次取出1球,去除后不放回,直到取到有两种不同颜色的球时即终止,用表示终止取球时所需的取球次数,则随机变量的数字期望是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面.

(Ⅰ)证明:平面

(Ⅱ)若,求二面角的正切值.

查看答案和解析>>

同步练习册答案