精英家教网 > 高中数学 > 题目详情
(2012•吉林二模)设函数f(x)=
1-a2
x2+ax-lnx (a∈R)
(Ⅰ)当a=1时,求函数f(x)的极值;
(Ⅱ)当a>1时,讨论函数f(x)的单调性.
(Ⅲ)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有ma+ln2>|f(x1)-f(x2)|成立,求实数m的取值范围.
分析:(Ⅰ)确定函数的定义域为(0,+∞),求导函数,确定函数的单调性,即可求得函数f (x)的极值;
(Ⅱ)求导函数,并分解,再进行分类讨论,利用f′(x)<0,确定函数单调减区间;f′(x)>0,确定函数的单调增区间;
(Ⅲ)确定f(x)在[1,2]上单调递减,可得f(x)的最大值与最小值,进而利用分离参数法,可得m>
1
2
-
3
2a
,从而可求实数m的取值范围.
解答:解:(Ⅰ)函数的定义域为(0,+∞).
当a=1时,f(x)=x-lnx,f(x)=1-
1
x
=
x-1
x

令f′(x)=0,得x=1.
当0<x<1时,f′(x)<0;当x>1时,f′(x)>0.
∴f(x)极小值=f(1)=1,无极大值…(4分)
(Ⅱ)f(x)=(1-a)x+a-
1
x
=
(1-a)x2+ax-1
x
=
[(1-a)x+1](x-1)
x
=
(1-a)(x-
1
a-1
)(x-1)
x
(5分)
1
a-1
=1
,即a=2时,f(x)=-
(x-1)2
x
≤0
,f(x)在(0,+∞)上是减函数;
1
a-1
<1
,即a>2时,令f′(x)<0,得0<x<
1
a-1
或x>1;令f′(x)>0,得
1
a-1
<x<1

1
a-1
>1
,即1<a<2时,令f′(x)<0,得0<x<1或x>
1
a-1
;令f′(x)>0,得1<x<
1
a-1
.(7分)
综上,当a=2时,f(x)在定义域上是减函数;
当a>2时,f(x)在(0,
1
a-1
)
和(1,+∞)单调递减,在(
1
a-1
,1)
上单调递增;
当1<a<2时,f(x)在(0,1)和(
1
a-1
,+∞)
单调递减,在(1,
1
a-1
)
上单调递增 (8分)
(Ⅲ)由(Ⅱ)知,当a∈(2,3)时,f(x)在[1,2]上单调递减,
∴当x=1时,f(x)有最大值,当x=2时,f(x)有最小值.
|f(x1)-f(x2)|≤f(1)-f(2)=
a
2
-
3
2
+ln2

∴ma+ln2>
a
2
-
3
2
+ln2
(10分)
而a>0经整理得m>
1
2
-
3
2a

由2<a<3得-
1
4
1
2
-
3
2a
<0
,所以m≥0.(12分)
点评:本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,考查恒成立问题,解题的关键是确定函数的最值,利用分离参数法求参数的范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•吉林二模)设函数f(x)=
1-a
2
x2+ax-lnx(a∈R)

(Ⅰ) 当a=1时,求函数f(x)的极值;
(Ⅱ)当a>1时,讨论函数f(x)的单调性.
(Ⅲ)若对任意a∈(3,4)及任意x1,x2∈[1,2],恒有
(a2-1)
2
m+ln2>|f(x1)-f(x2)|
成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)设集合A={x|0≤x<1},B={x|1≤x≤2},函数f(x)=
2x,(x∈A)
4-2x,(x∈B)
,x0∈A且f[f(x0)]∈A,则x0的取值范围是
log2
3
2
,1
log2
3
2
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)△ABC内角A,B,C的对边分别是a,b,c,若c=2
3
b
sin2A-sin2B=
3
sinBsinC
,则A=
π
6
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)执行程序框图,若输出的结果是
15
16
,则输入的a为(  )

查看答案和解析>>

同步练习册答案