精英家教网 > 高中数学 > 题目详情

【题目】已知函数 是奇函数
(1)求常数a的值
(2)判断函数f(x)在区间(﹣∞,0)上的单调性,并给出证明.

【答案】
(1)解:∵ 是奇函数,

∴定义域是{x|x≠0},f(1)+f(﹣1)=0,

解得a=


(2)解:由(1)得,

则f(x)在(﹣∞,0),(0,+∞)上都是减函数,

证明如下:任取0<x1<x2

f(x1)﹣f(x2)= ﹣(

= =

∵x1,x2∈(0,+∞),∴ >0, >0,

又x1<x2,则 >0,

∴f(x1)﹣f(x2)>0,则f(x1)>f(x2),

∴f(x)在(0,+∞)上是减函数,

当x1,x2∈(﹣∞,0)时,同理可证f(x)在(﹣∞,0)上是减函数,

综上知,函数f(x)在(﹣∞,0),(0,+∞)上都是减函数


【解析】(1)由函数解析式求出定义域,由奇函数的性质得f(1)+f(﹣1)=0,代入列出方程求出a的值;(2)由指数函数的单调性先判断,利用函数单调性的定义:取值、作差、变形、定号、下结论证明.
【考点精析】通过灵活运用奇偶性与单调性的综合,掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】小明家订了一份报纸,暑假期间他收集了每天报纸送达时间的数据,并绘制成频率分布直方图,如图所示.

(1)根据图中的数据信息,求出众数和中位数(精确到整数分钟);

(2)小明的父亲上班离家的时间在上午之间,而送报人每天在时刻前后半小时内把报纸送达(每个时间点送达的可能性相等),求小明的父亲在上班离家前能收到报纸(称为事件)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C 的参数方程为 (为参数),以直角坐标系原点O 为极点,x 轴正半轴为极轴建立极坐标系.

()求曲线C 的极坐标方程;

(),若l 1 l2与曲线C 相交于异于原点的两点 AB ,求AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:设a,b∈R,则“a+b>4”是“a>2且b>2”的必要不充分条件;命题q:若 <0,则 夹角为钝角,在命题①p∧q;②¬p∨¬q;③p∨¬q;④¬p∨q中,真命题是(
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)已知 是空间的两个单位向量,它们的夹角为60°,设向量 .求向量 的夹角; (Ⅱ)已知 是两个不共线的向量, .求证: 共面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为A1B1 , CD的中点.
(1)求| |
(2)求直线EC与AF所成角的余弦值;
(3)求二面角E﹣AF﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)= (a∈R)是奇函数,函数g(x)= 的定义域为(﹣2,+∞).
(1)求a的值;
(2)若g(x)= 在(﹣2,+∞)上单调递减,根据单调性的定义求实数m的取值范围;
(3)在(2)的条件下,若函数h(x)=f(x)+g(x)在区间(﹣1,1)上有且仅有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品关税与市场供应量P的关系近似地满足:P(x)=2 (其中t为关税的税率,且t∈[0, ],x为市场价格,b,k为正常数),当t= 时,市场供应量曲线如图所示:

(1)根据函数图象求k,b的值;
(2)若市场需求量Q,它近似满足Q(x)=2 .当P=Q时的市场价格为均衡价格,为使均衡价格控制在不低于9元的范围内,求税率t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列四个命题:
p1:若直线l和平面α内的无数条直线垂直,则l⊥α;
p2:若f(x)=2x﹣2x , 则x∈R,f(﹣x)=﹣f(x);
p3:若 ,则x0∈(0,+∞),f(x0)=1;
p4:在△ABC中,若A>B,则sinA>sinB.
其中真命题的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案