精英家教网 > 高中数学 > 题目详情
3.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=$\frac{6}{5}$.

分析 由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,
③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,④由以上可知:还剩下125-(8+36+54)=27个内部的小正方体的6个面都没有涂油漆,根据上面的分析即可得出其概率及X的分布列,利用数学期望的计算公式即可得出.

解答 解:由题意可知:X所有可能取值为0,1,2,3.
①8个顶点处的8个小正方体涂有3面,∴P(X=3)=$\frac{8}{125}$,
②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,∴P(X=2)=$\frac{36}{125}$,
③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,∴P(X=1)=$\frac{54}{125}$,
④由以上可知:还剩下125-(8+36+54)=27个内部的小正方体的6个面都没有涂油漆,∴P(X=0)=$\frac{27}{125}$.
因此E(X)=3×$\frac{8}{125}$+2×$\frac{36}{125}$+1$\frac{54}{125}$+0×$\frac{27}{125}$=$\frac{6}{5}$.
故答案为:$\frac{6}{5}$

点评 正确找出所涂油漆的面数的正方体的个数及古典概型的概率计算公式、分布列与数学期望是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.等比数列{an}中,a2+a4=20,a3+a5=40,则a6=(  )
A.16B.32C.64D.128

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C:x2+y2-4x-14y+45=0及点Q(-2,3).
(1)若M为圆C上任一点,求|MQ|的最大值和最小值;
(2)若实数m,n满足m2+n2-4m-14n+45=0,求k=$\frac{n-3}{m+2}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知椭圆E的左、右焦点分别为F1、F2,过F1且斜率为2的直线交椭圆E于P、Q两点,若△PF1F2为直角三角形,则椭圆E的离心率为$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知随机变量X~B(n,$\frac{1}{3}$),若D(x)=$\frac{4}{3}$,则P(X=2)=(  )
A.$\frac{13}{15}$B.$\frac{2}{81}$C.$\frac{13}{243}$D.$\frac{80}{243}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C的中心在坐标原点,一个焦点的坐标为$(\sqrt{3},0)$,椭圆C经过点P$(1,\frac{{\sqrt{3}}}{2})$.
(1)求椭圆C的方程; 
(2)设直线y=kx+b与椭圆C交于A,B两点,若|AB|=2,△AOB的面积S=1,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{OP}=(-8m,-6cos\frac{π}{3})$与单位向量(1,0)所成的角为θ,且$cosθ=-\frac{4}{5}$,则m的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义在R上的偶函数f(x)满足:对于任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)[f(x2)-f(x1)]>0,则当n∈N*时,有(  )
A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x∈N*|-2<x≤2},B={y|y=2x,x∈A}|,C={z|z=1+log2y,y∈B},则A∩C=(  )
A.{1,2}B.{2}C.{2,3,4}D.{1,2,3,4}

查看答案和解析>>

同步练习册答案