【题目】已知过点P(4,0)的动直线与抛物线C:交于点A,B,且(点O为坐标原点).
(1)求抛物线C的方程;
(2)当直线AB变动时,x轴上是否存在点Q使得点P到直线AQ,BQ的距离相等,若存在,求出点Q坐标,若不存在,说明理由.
【答案】(1)=;(2)轴上存在点,使得点到直线,的距离相等.
【解析】
(1)设过点的动直线为=,联立抛物线的方程,设,,运用韦达定理,结合向量的数量积的坐标表示,化简可得,进而得到抛物线方程;
(2)轴上假设存在点符合题意,由题意可得=,运用直线的斜率公式和韦达定理,化简可得的值,即可判断存在性.
(1)设过点的动直线为=,
代入抛物线=,可得=,
设,,
可得=,
由可得==,
解得=,则抛物线的方程为=;
(2)当直线变动时,轴上假设存在点使得点到直线,的距离相等,
由角平分线的判定定理可得为的角平分线,即有=,
由(1)可得=,=,
则,
化为=,
即为=,
化简可得=,
则轴上存在点,使得点到直线,的距离相等.
科目:高中数学 来源: 题型:
【题目】为了解高中学生对数学课是否喜爱是否和性别有关,随机调查220名高中学生,将他们的意见进行了统计,得到如下的列联表.
喜爱数学课 | 不喜爱数学课 | 合计 | |
男生 | 90 | 20 | 110 |
女生 | 70 | 40 | 110 |
合计 | 160 | 60 | 220 |
(1)根据上面的列联表判断,能否有的把握认为“喜爱数学课与性别”有关;
(2)为培养学习兴趣,从不喜爱数学课的学生中进行进一步了解,从上述调查的不喜爱数学课的人员中按分层抽样抽取6人,再从这6人中随机抽出2名进行电话回访,求抽到的2人中至少有1名“男生”的概率.
参考公式:.
P() | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品.现统计得到相关统计情况如下:
甲套设备的样本的频率分布直方图
乙套设备的样本的频数分布表
质量指标值 | ||||||
频数 | 1 | 6 | 19 | 18 | 5 | 1 |
(1)根据上述所得统计数据,计算产品合格率,并对两套设备的优劣进行比较;
(2)填写下面列联表,并根据列联表判断是否有95%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.
甲套设备 | 乙套设备 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
附:
0.15 | 0.10 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
参考公式:,其中
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年国庆节假期期间,某商场为掌握假期期间顾客购买商品人次,统计了10月1日7:00-23:00这一时间段内顾客0这一时间段内顾客购买商品人次,统计发现这一时间段内顾客购买商品共5000人次顾客购买商品时刻的频率分布直方图如下图所示,其中时间段7:00 11:00,11:00 15:00,15:00 ~19:00,19:00~23:00,依次记作[7,11),[11,15),[15,19),[19,23].
(1)求该天顾客购买商品时刻的中位数t与平均值(同一组中的数据用该组区间的中点值代表);
(2)现从10月1日在该商场购买商品的顾客中随机抽取100名顾客,经统计有男顾客 40人,其中10人购物时刻在[19,23](夜晚),女顾客60人,其中50人购物时刻在[7,19)(白天),根据提供的统计数据,完成下面的2×2列联表,并判断是否有90%的把握认为“男顾客更喜欢在夜晚购物”?
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】改革开放以来,中国快递行业持续快速发展,快递业务量从上世纪年代的万件提升到2018年的亿件,快递行业的发展也给我们的生活带来了很大便利.已知某市某快递点的收费标准为:首重(重量小于等于)收费元,续重元(不足按算). (如:一个包裹重量为则需支付首付元,续重元,一共元快递费用)
(1)若你有三件礼物重量分别为,要将三个礼物分成两个包裹寄出(如:合为一个包裹,一个包裹),那么如何分配礼物,使得你花费的快递费最少?
(2)对该快递点近天的每日揽包裹数(单位:件)进行统计,得到的日揽包裹数分别为件,件,件,件,件,那么从这天中随机抽出天,求这天的日揽包裹数均超过件的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,).
(1)当(e为自然对数的底数)时,
(i)若在上恰有两个不同的零点,求实数m的取值范围;
(ii)若(),求在上的最大值;
(2)当时,,,数列满足.求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com