精英家教网 > 高中数学 > 题目详情

如图,已知ABCD是正方形,PD⊥平面ABCD,PD=AD.

   (1)求二面角A-PB-D的大小,

   (2)在线段PB上是否存在一点E,使PC⊥平面ADE?若存在,确定E点的位置,若不存在,说明理由.

(1)解法一:联结AC交DB于点O.       ∵ABCD是正方形,∴AC⊥DB.

又PD⊥平面ABCD,AC平面ABCD,    ∴AC⊥PD, ∴AC⊥平面PBD.

作OF⊥PB于点F,联结AF,则AF⊥PB. ∴∠OFA就是二面角A-PB-D的平面角.

∵PD⊥平面ABCD,AB⊥AD,∴PA⊥AB. 令PD=AD=2,则在RTABC中,PA=,AB=2.

   ∴PB=,∴.

   ∴在RTAOF中,sin,∴.

   ∴二面角A-PB-D的大小为.

   解法二:建立如图所示的直角坐标系.

       联结AC,交BD于点O,取PA中点G,联结DG.

∵ABCD是正方形,∴AC⊥DB.

       又PD⊥平面ABCD,AC平面ABCD,

       ∴AC⊥PD, ∴AC⊥平面PBD.

       ∵PD⊥平面ABCD,AB⊥AD,∴PA⊥AB.

       ∴AB⊥平面PAD.

       ∵PD=AD,G为PA中点, ∴GD⊥平面PAB.

       故向量分别是平面PBD与平面PAB的法向量.

       令PD=AD=2,则A(2,0,0),C(0,2,0),∴=(-2,2,0).

       ∵P(0,0,2),A(2,0,0), ∴G(1,0,1),∴=(1,0,1).

∴向量的夹角余弦为

,∴二面角A-PB-D的大小为.

(2)解法一: 当点E是线段PB中点时,有PC⊥平面ADE.

证明如下:

       取PC中点H,联结EH,DH,则有EH∥BC,

又BC∥AD,故有EH∥AD.     ∴平面ADE即平面ADHE.

     ∵PD=DC,H为PC中点, ∴PC⊥DH.又∵PD⊥平面ABCD,

      AD⊥CD,∴AD⊥PC.

∴PC⊥平面ADHE,即PC⊥平面ADE.

解法二:建立如图所示的直角坐标系.

     ∵PD⊥平面ABCD,AD⊥CD,∴AD⊥PC.

  设E是线段PB上的一点,令.

     令PD=AD=2,则P(0,0,2),A(2,0,0),B(2,2,0),C(0,2,0),

 ∴(-2,0,2),(2,2,-2),(0,2,-2).

. ∴.

2(-)=0,得.

∴当,即点E是线段PB中点时,有AE⊥PC.又∵PD⊥平面ABCD,AD⊥CD,∴AD⊥PC.∴当点E是线段PB中点时,有PC⊥平面ADE.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知ABCD是边长为a的正方形,E,F分别是AB,AD的中点,CG⊥面ABCD,CG=a.
(1)求证:BD∥EFG;
(2)求点B到面GEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知ABCD是底角为30°的等腰梯形,AD=2
3
,BC=4
3
,取两腰中点M、N分别交对角线BD、AC于G、H,则
AG
AC
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知ABCD是边长为1的正方形,AF⊥平面ABCD,CE∥AF,CE=λAF(λ>1).
(Ⅰ)证明:BD⊥EF;
(Ⅱ)若AF=1,且直线BE与平面ACE所成角的正弦值为
3
2
10
,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知ABCD是矩形,PD⊥平面ABCD,PB=2,PB与平面ABCD所成的角为30°,PB与平面PCD所成的角为45°,求:
(1)PB与CD所成角的大小;
(2)二面角C-PB-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知ABCD是正方形,DE⊥平面ABCD,BF⊥平面ABCD,且AB=FB=2DE.
(Ⅰ)求证:平面AEC⊥平面AFC;
(Ⅱ)求直线EC与平面BCF所成的角;
(Ⅲ)问在EF上是否存在一点M,使三棱锥M-ACF是正三棱锥?若存在,试确定M点的位置;若不存在,说明理由.

查看答案和解析>>

同步练习册答案