精英家教网 > 高中数学 > 题目详情

(12分)求与双曲线有共同渐近线,并且经过点 (-3,)的双曲线方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)已知椭圆的离心率,过右焦点的直线与椭圆相交于两点,当直线的斜率为1时,坐标原点到直线的距离为.
(1)求椭圆的方程
(2)椭圆上是否存在点,使得当直线绕点转到某一位置时,有成立?若存在,求出所有满足条件的点的坐标及对应直线方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分 )已知椭圆经过点,一个焦点是
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆轴的两个交点为,点在直线上,直线分别与椭圆交于两点.试问:当点在直线上运动时,直线是否恒经过定点?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线与椭圆的交点分别为.

(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线的斜率分别为,证明
(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线3x2-y2=3,过点P(2,1)作一直线交双曲线于A、B两点,若P为
AB的中点,
(1)求直线AB的方程;
(2)求弦AB的长

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)离心率为的椭圆的左、右焦点分别为是坐标原点.
(1)求椭圆的方程;
(2)若直线交于相异两点,且,求.(其中是坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.(Ⅰ)求抛物线的方程;(Ⅱ)是否存在点,使得直线与抛物线相切于点若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知点是圆上任意一点,点与点关于原点对称。线段的中垂线分别与交于两点.
(1)求点的轨迹的方程;
(2)斜率为的直线与曲线交于两点,若为坐标原点),试求直线上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知是双曲线上不同的三点,且连线经过坐标原点,
若直线的斜率乘积,求双曲线的离心率;

查看答案和解析>>

同步练习册答案