精英家教网 > 高中数学 > 题目详情
精英家教网如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE,BD∩AC=G.
(1)求证:AE⊥平面BCE;
(2)求证:AE∥平面BFD;
(3)求三棱锥E-ADC的体积.
分析:(1)由已知中AD⊥平面ABE,AD∥BC,得到BC⊥平面ABE,即AE⊥BC,又由BF⊥平面ACE,即BF⊥AE,再由线面垂直的判定定理即可得到AE⊥平面BCE;
(2)连接GF,由已知BF⊥平面ACE,我们易得GF∥AE,由线面平行的判定定理,可以得到AE∥平面BFD;
(3)由已知可得三棱锥E-ADC的体积等于三棱锥E-ABC的体积,求出三棱锥E-ABC的体积,即可得到棱锥E-ADC的体积.
解答:解:(1)证明:∵AD⊥平面ABE,AD∥BC,
∴BC⊥平面ABE,∴AE⊥BC.(2分)
又∵BF⊥平面ACE,∴BF⊥AE,
∵BC∩BF=B,∴AE⊥平面BCE(4分)
(2)连接GF,∵BF⊥平面ACE,∴BF⊥CE
∵BE=BC,∴F为EC的中点;
∵矩形ABCD中,G为两对角线的交点且是两线段的中点,
∴GF∥AE,(7分)
∵GF?平面BFD,AE?平面BFD,
∴AE∥平面BFD.(8分)
(3)∵三棱锥E-ADC的体积等于三棱锥E-ABC的体积
∵VE-ABC=
1
3
•BC•SABE
=
4
3

故棱锥E-ADC的体积为
4
3
点评:本题考查的知识点是直线与平面垂直的判定,棱锥的体积,及直线与平面平行的判定,其中熟练掌握空间中直线与平面的平行及垂直的判定、性质、定义、几何特征是解答此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,A′A⊥平面ABCD.
(1) 求证:A′C∥平面BDE;
(2) 求证:平面A′AC⊥平面BDE
(3) 求平面BDE与平面ABCD所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(Ⅰ)证明PQ⊥平面DCQ;
(Ⅱ)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为矩形,且AD=2,AB=1,PA⊥平面ABCD,PA=1,E为BC的中点.
(1)求点C到面PDE的距离;  
(2)求二面角P-DE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD
128°
128°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角D-PQ-C的余弦值.

查看答案和解析>>

同步练习册答案