【题目】在△ABC中,AB=3,AC边上的中线BD= , =5.
(1)求AC的长;
(2)求sin(2A﹣B)的值.
【答案】
(1)解:∵ =5,AB=3,AC=2AD.
∴ = . + = ,∴( + )2= .
∴ ﹣2 =| |2,
∴AD=1,AC=2.
(2)解:由(1)得 = .可得cosA= ,∴sinA= .
在△ABC中,BC2=AB2+AC2﹣2ABACcosA,∴BC= .
在△ABC中, 可得sinB= ,∴cosB= .
sin(2A﹣B)=sin2AcosB﹣cos2AsinB=2sinAcosAcosB﹣(1﹣2sin2A)sinB
=2× ﹣(1﹣2× )× =
【解析】(1)根据 =5, + = ,利用平方求出AD,再求AC的长;(2)通过数量积、正弦、余弦定理,求出cosA、sinA、sinB、cosB,把sin(2A﹣B)展开求出它的值.
【考点精析】关于本题考查的正弦定理的定义和余弦定理的定义,需要了解正弦定理:;余弦定理:;;才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中, 底面, , , , 分别是, 的中点, 在上,且.
(1)求证: 平面;
(2)在线段上上是否存在点,使二面角
的大小为?若存在,求出的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(2cos2x, ), =(1,sin2x),函数f(x)= ﹣1.
(1)当x= 时,求|a﹣b|的值;
(2)求函数f(x)的最小正周期以及单调递增区间;
(3)求方程f(x)=k,(0<k<2),在[﹣ , ]内的所有实数根之和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为.
(1)求的方程;
(2)过点的直线与相交于,两点,与相交于,两点,且与同向
(ⅰ)若,求直线的斜率
(ⅱ)设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆心为C的圆经过点A(0,2)和B(1,1),且圆心C在直线l:x+y+5=0上.
(1)求圆C的标准方程;
(2)若P(x,y)是圆C上的动点,求3x﹣4y的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4 坐标系与参数方程
在平面直角坐标系中,直线的参数方程为( 为参数).以原点为极点, 轴正半轴为极轴 建立极坐标系,圆的方程为.
(1)写出直线的普通方程和圆的直角坐标方程;
(2)若点的直角坐标为,圆与直线交于A,B两点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com