精英家教网 > 高中数学 > 题目详情
14.已知数列{an}是等差数列,若a7+3a9<0,a8•a9<0,且数列{an}的前n项和Sn有最大值,那么当Sn取得最小正值时,n=(  )
A.18B.17C.16D.15

分析 由等差数列的性质结合a7+3a9<0,得a8+a9<0,再由a8•a9<0,可得a8,a9异号,而数列{an}的前n项和Sn有最大值,可知数列为递减数列,由此可得S15>0,S16<0,则答案可求.

解答 解:在等差数列{an}中,由a7+3a9<0,得2(a8+a9)<0,即a8+a9<0,
又a8•a9<0,∴a8,a9异号,
由数列{an}的前n项和Sn有最大值,可知数列为递减数列,
则a8>0,a9<0,且|a8|<|a9|,
∴S15=15a8>0,${S}_{16}=\frac{16({a}_{1}+{a}_{16})}{2}=8({a}_{8}+{a}_{9})<0$.
则当Sn取得最小正值时,n=15.
故选:D.

点评 本题考查等差数列的前n项和,考查了等差数列的性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.函数y=$\frac{{\sqrt{3}}}{2}cosx+\frac{1}{2}$sinx的单调增区间[2kπ-$\frac{5π}{6}$,kπ+$\frac{π}{6}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.二次函数y=ax2+ax+2(a>0)在R上的最小值为f(a)
(1)写出f(a)的解析式
(2)证明:f(a)在[1,5]上递减.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\left\{\begin{array}{l}2x(x>0)\\ x+1(x≤0)\end{array}$,若f(a)+f(1)=0,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知锐角三角形三边长分别为2,3,a,则a的取值范围为(  )
A.1<a<5B.1<a<$\sqrt{13}$C.$\sqrt{5}$<a<5D.$\sqrt{5}$<a<$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C:x2+y2-2x-10y+13=0及点Q(-4,4),
(Ⅰ)若点P(2m+4,3m+3)在圆C上,求PQ的斜率;
(Ⅱ)若点M是圆C上任意一点,求|MQ|的最大值、最小值;
(Ⅲ)若N(a,b)满足关系:a2+b2-2a-10b+13=0,求出t=$\frac{b-4}{a+4}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l经过点(0,-2),($\sqrt{3}$,1).
(1)求直线l的方程;
(2)求直线l与两坐标轴围成三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.
(1)写出该抛物线的标准方程及其准线方程;
(2)当直线PA与PB的斜率存在且倾斜角互补时,求y1+y2的值及直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC的三内角A,B,C所对三边分别为a,b,c,且sin(A-$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$.
(1)求tanA的值;
(2)若△ABC的面积S=24,b=10,求a的值.

查看答案和解析>>

同步练习册答案