精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}中,a3=5,a5+a6=20,且2 ,2 ,2 成等比数列,数列{bn}满足bn=an﹣(﹣1)nn.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设sn是数列{bn}前n项和,求sn

【答案】解:(I)∵2 ,2 ,2 成等比数列,∴ =2 2 ,∴2an+1=an+an+2 . ∴数列{an}为等差数列,设公差为d,∵a3=5,a5+a6=20,
∴a1+2d=5,2a1+9d=20,
解得a1=1,d=2.
∴an=1+2(n﹣1)=2n﹣1.
∴bn=an﹣(﹣1)nn=(2n﹣1)﹣(﹣1)nn.
(II)设数列{﹣(﹣1)nn}的前n项和为Tn
则Tn=﹣1+2﹣3+…+(﹣1)nn.
∴﹣Tn=1﹣2+3+…+(﹣1)n(n﹣1)+(﹣1)n+1n,
∴2Tn=﹣1+1﹣1+…+(﹣1)n﹣(﹣1)n+1n= ﹣(﹣1)n+1n,
∴Tn= +
∴Sn= =n2﹣n﹣
【解析】(I)由2 ,2 ,2 成等比数列,可得 =2 2 ,可得2an+1=an+an+2 . 利用等差数列的通项公式可得an , 进而得出bn . (II)利用“错位相减法”、等差数列等比数列的求和公式即可得出.
【考点精析】掌握等比数列的通项公式(及其变式)和数列的前n项和是解答本题的根本,需要知道通项公式:;数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】正四面体ABCD中,E、F分别为边AB、BD的中点,则异面直线AF、CE所成角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l: (t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.
(1)将曲线C的极坐标方程化为直坐标方程;
(2)设点M的直角坐标为(5, ),直线l与曲线C的交点为A,B,求|MA||MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在小正方形边长为1的网格中画出了某多面体的三视图,则该多面体的外接球表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x+a|+|x﹣ |(x∈R,实数a<0).
(Ⅰ)若f(0)> ,求实数a的取值范围;
(Ⅱ)求证:f(x)≥

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρcos2θ=2sinθ,它在点 处的切线为直线l.
(1)求直线l的直角坐标方程;
(2)已知点P为椭圆 =1上一点,求点P到直线l的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 C: =1( a>b>0)经过点 (1, ),离心率为 ,点 A 为椭圆 C 的右顶点,直线 l 与椭圆相交于不同于点 A 的两个点P (x1 , y1),Q (x2 , y2).
(Ⅰ)求椭圆 C 的标准方程;
(Ⅱ)当 =0 时,求△OPQ 面积的最大值;
(Ⅲ)若直线 l 的斜率为 2,求证:△APQ 的外接圆恒过一个异于点 A 的定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,若g(x)=f(x+1)+5,g′(x)为g(x)的导函数,对x∈R,总有g′(x)>2x,则g(x)<x2+4的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f(x)在点(1,﹣3)处的切线方程是

查看答案和解析>>

同步练习册答案