精英家教网 > 高中数学 > 题目详情
9.已知x>0,y>0,2xy=x+4y+a
(1)当a=6时,求xy的最小值;
(2)当a=0时,求$x+y+\frac{2}{x}+\frac{1}{2y}$的最小值.

分析 (1)利用基本不等式的性质转化为二次函数即可得出、
(2)利用“乘1法”与基本不等式的性质即可得出

解答 解:(1)当a=6时,$2xy=x+4y+6≥4\sqrt{xy}+6$,当且仅当x=4y=6时,等号成立.
即${(\sqrt{xy})^2}-2\sqrt{xy}-3≥0$,
∴$(\sqrt{xy}+1)(\sqrt{xy}-3)≥0$,
∴$\sqrt{xy}≥3$,
∴xy≥9,
∴xy的最小值为9.
(2)当a=0时,可得2xy=x+4y,
两边都除以2xy,得$\frac{1}{2y}+\frac{2}{x}=1$,
∴$x+y+\frac{2}{x}+\frac{1}{2y}=x+y+1=(x+y)(\frac{1}{2y}+\frac{2}{x})+1=\frac{7}{2}+(\frac{x}{2y}+\frac{2y}{x})≥\frac{7}{2}+2\sqrt{\frac{x}{2y}•\frac{2y}{x}}=\frac{11}{2}$,
当且仅当$\frac{x}{2y}=\frac{2y}{x}=1$,即x=3,$y=\frac{3}{2}$时取等号.
∴$x+y+\frac{2}{x}+\frac{1}{2y}$的最值为$\frac{11}{2}$.

点评 本题考查了“乘1法”与基本不等式的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知tan(π-x)=2,
(1)求$\frac{sinx+cosx}{sinx-cosx}$的值;    
(2)求sin2x+sinxcosx-cos2x-2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.30与18的等差中项是24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设x取实数,则f(x)与g(x)表示同一个函数的是(  )
A.f(x)=x,$g(x)=\sqrt{x^2}$B.f(x)=x与g(x)=$\root{3}{x^3}$
C.f(x)=1,g(x)=x0D.$f(x)=\frac{{{x^2}-9}}{x+3}$,g(x)=x-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号).若假设第1组抽出的号码为3,则第5组中用抽签方法确定的号码是(  )
A.33B.34C.35D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}的前n项和为Sn,a7=$\frac{1}{64}$,a2=$\frac{1}{2}$.
(Ⅰ)求数列{an}的通项公式及前n项和为Sn
(Ⅱ)若bn=log2(2-Sn),数列{bn}的前n项和为Tn,求数列$\left\{{\frac{1}{T_n}}\right\}$(n≥2)的前n项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=alog2x+blog3x+2,解决下列问题:
(1)求f(1)的值;
(2 )求$f(x)+f({\frac{1}{x}})$的值;
(3)计算:$f(1)+f(2)+f(3)+…+f(2013)+f({\frac{1}{2}})+f({\frac{1}{3}})+…+f({\frac{1}{2013}})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过两点A(m2+2,3-m2),B(3-m-m2,-2m)的直线l的倾斜角为135°,则m的值为(  )
A.-1或-2B.-1C.-2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知logx8=3,则x的值为(  )
A.$\frac{1}{2}$B.2C.3D.4

查看答案和解析>>

同步练习册答案