精英家教网 > 高中数学 > 题目详情
(2012•长春一模)选修4-4:坐标系与参数方程
在极坐标系中,O为极点,半径为2的圆C的圆心的极坐标为(2,
π
3
)

(1)求圆C的极坐标方程;
(2)P是圆C上一动点,点Q满足3
OP
=
OQ
,以极点O为原点,以极轴为x轴正半轴建立直角坐标系,求点Q的轨迹的直角坐标方程.
分析:(1)设M(ρ,θ)是圆C上任一点,过C作CH⊥OM于H点,则在RT△COH中,OH=OCsin∠COH能够进一步得出得出ρ,θ的关系.
(2)设Q的极坐标为(ρ,θ),所以点P的极坐标为(
1
3
ρ,θ),将P的坐标代入(1)中方程,再化为直角坐标方程.
解答:解:(1)设M(ρ,θ)是圆C上任一点,过C作CH⊥OM于H点,则在RT△COH中,OH=OCsin∠COH,而∠COH=∠COM=|θ-
π
3
|,
OH=
1
2
OM=
1
2
ρ,OC=2,所以
1
2
ρ=2cos|θ-
π
3
|,即ρ=4cos(θ-
π
3
)为圆C的极坐标方程.
(2)设Q的极坐标为(ρ,θ),由于3
OP
=
OQ
,所以点P的极坐标为(
1
3
ρ,θ),代入(1)中方程得
1
3
ρ=4cos(θ-
π
3

即ρ=6cosθ+6
3
sinθ,∴ρ2=6ρcosθ+6
3
ρsinθ,
所以点Q的轨迹的直角坐标方程为x2+y2-6x-6
3
y=0.
点评:本题考查极坐标和直角坐标的互化及参数方程与普通方程的互化,“相关点”法求轨迹方程,考查转化、计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•长春一模)设集合A={x||x|≤2,x∈R},B={y|y=-x2,-1≤x≤2},则?R(A∩B)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长春一模)选修4-5:不等式选讲
已知函数f(x)=|x-1|+|2x+2|.
(Ⅰ)解不等式f(x)>5;
(Ⅱ)若不等式f(x)<a(a∈R)的解集为空集,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长春一模)“a<-2”是“函数f(x)=ax+3在区间[-1,2]上存在零点x0”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长春一模)若复数(a+i)2在复平面内对应的点在y轴负半轴上,则实数a的值是(  )

查看答案和解析>>

同步练习册答案