【题目】已知圆C1:(x﹣1)2+(y﹣3)2=1,圆C2:(x﹣6)2+(y﹣1)2=1,M,N分别是圆C1 , C2上的动点,P为直线x﹣y﹣2=0上的动点,则||PM|﹣|PN||的最大值为 .
科目:高中数学 来源: 题型:
【题目】给定椭圆C: + =1(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆”.已知椭圆C的离心率为 ,且经过点(0,1).
(1)求实数a,b的值;
(2)若过点P(0,m)(m>0)的直线l与椭圆C有且只有一个公共点,且l被椭圆C的伴随圆C1所截得的弦长为2 ,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣kx+2,k∈R.
(1)若k=1,求函数f(x)的单调区间;
(2)若f(x)<2在R+上恒成立,求k的取值范围;
(3)若x1>0,x2>0,x1+x2<ex1x2 , 求证x1+x2>1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂为了解甲、乙两条生产线生产的产品的质量,从两条生产线生产的产品中随机抽取各10件,测量产品中某种元素的含量(单位:毫克).如图是测量数据的茎叶图:
规定:当产品中的此种元素含量满足≥18毫克时,该产品为优等品.
(1)根据样本数据,计算甲、乙两条生产线产品质量的均值与方差,并说明哪条生产线的产品的质量相对稳定;
(2)从乙厂抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优等品数ξ的分布列及其数学期望E(ξ).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x2+aln(x+1).
(1)求函数f(x)的单调区间;
(2)若函数F(x)=f(x)+ln 有两个极值点x1 , x2且x1<x2 , 求证F(x2)> .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:y=x+1,圆O: ,直线l被圆截得的弦长与椭圆C: 的短轴长相等,椭圆的离心率e= .
(1)求椭圆C的方程;
(2)过点M(0, )的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过定点T?若存在,求出点T的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com