精英家教网 > 高中数学 > 题目详情

【题目】随着生活水平的逐步提高,人们对文娱活动的需求与日俱增,其中观看电视就是一种老少皆宜的娱乐活动.但是我们在观看电视娱乐身心的同时,也要注意把握好观看时间,近期研究显示,一项久坐的生活指标——看电视时间,是导致视力下降的重要因素,即看电视时间越长,视力下降的风险越大.研究者在某小区统计了每天看电视时间(单位:小时)与视力下降人数的相关数据如下:

编号

1

2

3

4

5

1

1.5

2

2.5

3

12

16

22

24

26

1)请根据上面的数据求关于的线性回归方程

2)我们用(1)问求出的线性回归方程估计回归方程,由于随机误差,所以的估计值,成为点()的残差.

①填写下面的残差表,并绘制残差图;

编号

1

2

3

4

5

1

1.5

2

2.5

3

12

16

22

24

26

②若残差图所在带状区域宽度不超过4,我们则认为该模型拟合精度比较高,回归方程的预报精度较高,试根据①绘制的残差图分折该模型拟合精度是否比较高?

附:回归直线的斜率和截距的最小二乘估计分别为

【答案】1;(2)①残差表和残差图详见解析;②该模型拟合精度比较高.

【解析】

1)求出样本中心的坐标,回归直线方程的斜率,然后截距,即可得到答案;

2)绘制残差图,结合图表分析该模型拟合精度比较高.

1

关于的线性回归方程为:

2)①残差表

编号

1

2

3

4

5

1

1.5

2

2.5

3

12

16

22

24

26

0.8

0.4

2

0.4

1.2

残差图:

残差图所在带状区域宽度不超过4,我们认为该模型拟合精度比较高.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:

方案1:运走设备,此时需花费4000元;

方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56000元;

方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.

(1)试求方案3中损失费X(随机变量)的分布列;

(2)试比较哪一种方案好.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李先生家住小区,他工作在科技园区,从家开车到公司上班路上有两条路线(如图),路线上有三个路口,各路口遇到红灯的概率均为路线上有两个路口,各路口遇到红灯的概率依次为.

Ⅰ)若走路线,求最多遇到1次红灯的概率;

Ⅱ)若走路线,求遇到红灯次数的数学期望;

Ⅲ)按照平均遇到红灯次数最少的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】总体由编号为0102...394040个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为(

A.23B.21C.35D.32

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线过点

1)求抛物线的方程,并求其焦点坐标与准线方程;

2)直线与抛物线交于不同的两点过点轴的垂线分别与直线交于两点,其中为坐标原点.为线段的中点,求证:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,直线的极坐标方程为

1)求曲线的普通方程和直线的直角坐标方程;

2)已知点,点为曲线上的动点,求线段的中点到直线的距离的最大值.并求此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阿波罗尼斯(古希腊数学家,约公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.①若定点为,写出的一个阿波罗尼斯圆的标准方程__________;②△中,,则当△面积的最大值为时,______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1F2是椭圆Cab0)的左、右焦点,过椭圆的上顶点的直线x+y=1被椭圆截得的弦的中点坐标为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)过F1的直线l交椭圆于AB两点,当△ABF2面积最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直四棱柱中,底面是边长为6的正方形,点在线段上,且满足,过点作直四棱柱外接球的截面,所得的截面面积的最大值与最小值之差为,则直四棱柱外接球的半径为(

A.B.C.D.

查看答案和解析>>

同步练习册答案