精英家教网 > 高中数学 > 题目详情

【题目】设函数,曲线在点处的切线方程为.

1)求的解析式;

(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.

【答案】(1) ;(2)证明见解析.

【解析】解:(1)方程7x4y120可化为yx3

x2时,y

f′(x)a

于是,解得

f(x)x

(2)证明:设P(x0y0)为曲线上任一点,由f′(x)1知,曲线在点P(x0y0)处的切线方程为yy0(1)·(xx0),即y(x0)(1)(xx0)

x0得,y=-,从而得切线与直线x0,交点坐标为(0,- )

yx,得yx2x0,从而得切线与直线yx的交点坐标为(2x0,2x0)

所以点P(x0y0)处的切线与直线x0yx所围成的三角形面积为|||2x0|6

曲线yf(x)上任一点处的切线与直线x0和直线yx所围成的三角形面积为定值,此定值为6

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义域为R的偶函数f(x)满足对x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直角坐标系xOy平面内,已知动点M到点D(﹣4,0)与E(﹣1,0)的距离之比为2.
(1)求动点M的轨迹C的方程;
(2)是否存在经过点(﹣1,1)的直线l,它与曲线C相交于A,B两个不同点,且满足 (O为坐标原点)关系的点M也在曲线C上,如果存在,求出直线l的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣5:不等式选讲
已知函数f(x)=|x+1|﹣|x|+a.
(1)若a=0,求不等式f(x)≥0的解集;
(2)若方程f(x)=x有三个不同的解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的一个上界.已知函数 .

(1)若函数为奇函数,求实数的值;

(2)在(1)的条件下,求函数在区间上的所有上界构成的集合;

(3)若函数上是以3为上界的有界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在一个坡度一定的山坡AC的顶上有一高度为25m的建筑物CD,为了测量该山坡相对于水平地面的坡角θ,在山坡的A处测得∠DAC=15°,沿山坡前进50m到达B处,又测得∠DBC=45°,根据以上数据可得cosθ=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xoy中,直线l的参数方程为 (t为参数)在极坐标系与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴中,曲线C的方程为

(Ⅰ)求曲线C的直角坐标方程;

(Ⅱ)设曲线C与直线l交于点AB,若点P的坐标为(1,1),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一辆汽车在某段路程中的行驶速度与时间的关系如下图:

(Ⅰ)求图中阴影部分的面积,并说明所求面积的实际意义;

(Ⅱ)假设这辆汽车的里程表在汽车行驶这段路程前的读数为,试将汽车行驶这段路程时汽车里程表读数表示为时间的函数,并求出当汽车里程表读数为时,汽车行驶了多少时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.

(1)若A∩B={2},求实数a的值;

(2)若A∪B=A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案