【题目】已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为F(-,0),且过点D(2,0).
(1)求该椭圆的标准方程;
(2)设点A(1,),若P是椭圆上的动点,求线段PA的中点M的轨迹方程.
【答案】解:(1)由题意知椭圆的焦点在x轴上,设椭圆的标准方程是
∵椭圆经过点D(2,0),左焦点为F(-,0),
∴a=2,c=,可得b==1
因此,椭圆的标准方程为.
(2)设点P的坐标是(x0 , y0),线段PA的中点为M(x,y),
由根据中点坐标公式,可得,整理得,
∵点P(x0 , y0)在椭圆上,
∴可得,化简整理得,
由此可得线段PA中点M的轨迹方程是.
【解析】(1)设椭圆方程为 , 根据题意可得a=2且c= , 从而b==1,得到椭圆的标准方程;
(2)设点P(x0 , y0),线段PA的中点为M(x,y),根据中点坐标公式将x0、y0表示成关于x、y的式子,将P(x0 , y0)关于x、y的坐标形式代入已知椭圆的方程,化简整理即可得到线段PA的中点M的轨迹方程.
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)若函数在处的切线平行于直线,求实数a的值;
(Ⅱ)判断函数在区间上零点的个数;
(Ⅲ)在(Ⅰ)的条件下,若在上存在一点,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)对定义域R内的任意x都有f(x)=f(4﹣x),且当x≠2时其导函数f′(x)满足(x﹣2)f′(x)>0,若2<a<4则( )
A.f(2a)<f(3)<f(log2a)
B.f(log2a)<f(3)<f(2a)
C.f(3)<f(log2a)<f(2a)
D.f(log2a)<f(2a)<f(3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设复数z=a+i(i是虚数单位,a∈R,a>0),且|z|= .
(Ⅰ)求复数z;
(Ⅱ)在复平面内,若复数+(m∈R)对应的点在第四象限,求实数m取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知全集U=R,集合A={x|x<﹣4,或x>2},B={x|﹣1≤2x﹣1﹣2≤6}.
(1)求A∩B、(UA)∪(UB);
(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各组函数,在同一直角坐标系中f(x)与g(x)相同的一组是( )
A.f(x)= ,g(x)=
B.f(x)= ,g(x)=x﹣3
C.f(x)= ,g(x)=
D.f(x)=x,g(x)=lg(10x)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= (a>0且a≠1)是定义域为R的奇函数.
(Ⅰ)若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集;
(Ⅱ)若f(1)= ,且g(x)=a2x+a-2x-4f(x),求g(x)在[1,+∞)上的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com