【题目】已知函数.
(1)用五点法画出它在一个周期内的闭区间上的图象;
(2)指出f(x)的周期、振幅、初相、对称轴;
(3)此函数图象由y=sinx的图象怎样变换得到?(注:y轴上每一竖格长为1)
【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析.
【解析】试题分析:
(1)由题意结合五点法列表,据此绘制函数图象即可;
(2)结合函数的解析式可得函数的周期为,振幅为3,初相为,对称轴方程为:.
(3)结合三角函数的变换性质可知变换过程如下:由y=sinx在[0,2π]上的图象向左平移个单位,把横坐标伸长为原来的2倍,把纵坐标伸长为原来的3倍,向上平移3个单位,即可得到的图象.
试题解析:
(1)令取0,,π,,2π,列表如下:
0 | π | 2π | |||
x |
|
|
|
|
|
3 | 6 | 3 | 0 | 3 |
在一个周期内的闭区间上的图象如下图所示:
(2)∵函数中,A=3,B=3,ω=,φ=.
∴函数f(x)的周期T=4π,振幅为3,初相为,
对称轴满足:,
据此可得对称轴方程为:.
(3)此函数图象可由y=sinx在[0,2π]上的图象经过如下变换得到:
①向左平移个单位,得到y=sin(x+)的图象;
②再保持纵坐标不变,把横坐标伸长为原来的2倍得到y=的图象;
③再保持横坐标不变,把纵坐标伸长为原来的3倍得到y=的图象;
④再向上平移3个单位,得到的图象.
科目:高中数学 来源: 题型:
【题目】已知圆C的方程:和直线l的方程:,点P是圆C上动点,直线l与两坐标轴交于A、B两点.
(1)求与圆C相切且垂直于直线l的直线方程;
(2)求面积的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现采用随机模拟的方法估计某运动员射击次,至少击中次的概率:先由计算机给出到之间取整数值的随机数,指定,表示没有击中目标,,,,,,,,表示击中目标,以个随机数为一组,代表射击次的结果,经随机模拟产生了组随机数:
根据以上数据统计该运动员射击次至少击中次的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:对数 有意义;命题q:实数t满足不等式 .(Ⅰ)若命题p为真,求实数 的取值范围;
(Ⅱ)若命题p是命题q的充分不必要条件,求实数 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于不同的A、B两点.
(1)如果直线l过抛物线的焦点,求 · 的值;
(2)如果 · =-4,证明直线l必过一定点,并求出该定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲袋中有1只黑球,3只红球;乙袋中有2只黑球,1只红球.
(1)从甲袋中任取两球,求取出的两球颜色不相同的概率;
(2)从甲,乙两袋中各取一球,求取出的两球颜色相同的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某初级中学有三个年级,各年级男、女人数如下表:
初一年级 | 初二年级 | 初三年级 | |
女生 | 370 | 200 | |
男生 | 380 | 370 | 300 |
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.
(1)求 的值;
(2)用分层抽样的方法在初三年级中抽取一个容量为5的样本,求该样本中女生的人数;
(3)用随机抽样的方法从初二年级女生中选出8人,测量它们的左眼视力,结果如下:1.2,1.5,1.2,1.5,1.5,1.3,1.0,1.2.把这8人的左眼视力看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.1的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆 : (其中 为圆心)上的每一点横坐标不变,纵坐标变为原来的一半,得到曲线 .
(1)求曲线 的方程;
(2)若点 为曲线 上一点,过点 作曲线 的切线交圆 于不同的两点 (其中 在 的右侧),已知点 .求四边形 面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com