20£®ÒÑÖªÕýÏîÊýÁÐ{an}ÖУ¬a1=2£¬$a_n^2-{a_n}{a_{n-1}}-2n{a_{n-1}}-4{n^2}=0$£¬£¨n¡Ý2£¬n¡ÊN£©
£¨1£©Ð´³öa2¡¢a3µÄÖµ£¨Ö»Ðëд½á¹û£©£»
£¨2£©Çó³öÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©Éè${b_n}=\frac{1}{{{a_{n+1}}}}+\frac{1}{{{a_{n+2}}}}+\frac{1}{{{a_{n+3}}}}+¡­+\frac{1}{{{a_{2n}}}}$£¬Èô¶ÔÈÎÒâµÄÕýÕûÊýn£¬µ±m¡Ê[-1£¬1]ʱ£¬²»µÈʽ${t^2}-2mt+\frac{1}{6}£¾{b_n}$ºã³ÉÁ¢£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©¸ù¾Ý$a_n^2-{a_n}{a_{n-1}}-2n{a_{n-1}}-4{n^2}=0$£¬£¨n¡Ý2£¬n¡ÊN£©Ð´³ö´ð°¸¼´¿É£»
£¨2£©ÓÉÒÑÖªÌõ¼þµÃµ½£¨an+2n£©£¨an-an-1-2n£©=0£¬ÓÉ´ËÇóµÃ${a_n}-{a_{n-1}}-2n=0\begin{array}{l}{\;}{£¨n£¾2£©}\end{array}$£¬ËùÒÔan=£¨an-an-1£©+£¨an-1-an-2£©+¡­+£¨a2-a1£©+a1£»
£¨3£©ÀûÓÃÁÑÏî·¨ÇóµÃbn=$\frac{1}{£¨2n+\frac{1}{n}£©}+3$£¬È»ºóÀûÓû»Ôª·¨µÃµ½Áî$f£¨x£©=2x+\frac{1}{x}$£¨x¡Ý1£©£¬ÔòÆäµ¼º¯ÊýΪ$f'£¨x£©=2-\frac{1}{x^2}¡Ý2-1£¾0$£¬½áºÏº¯ÊýµÄµ¥µ÷ÐÔ½øÐнâ´ð£®

½â´ð ½â£º£¨1£©a2=6£¬a3=12£»
£¨2£©ÓÉÒÑÖª¿ÉµÃ£º£¨an-2n£©£¨an+2n£©-an-1£¨an+2n£©=0£¬
¡à£¨an+2n£©£¨an-an-1-2n£©=0£¬
ÓÖan£¾0£¬
¡à${a_n}-{a_{n-1}}-2n=0\begin{array}{l}{\;}{£¨n£¾2£©}\end{array}$£¬
¡àan=£¨an-an-1£©+£¨an-1-an-2£©+¡­+£¨a2-a1£©+a1=2+4+6+¡­+2n=n£¨n+1£©£»
£¨3£©${b_n}=\frac{1}{{{a_{n+1}}}}+\frac{1}{{{a_{n+2}}}}+\frac{1}{{{a_{n+3}}}}+¡­+\frac{1}{{{a_{2n}}}}$
=$\frac{1}{£¨n+1£©£¨n+2£©}+\frac{1}{£¨n+2£©£¨n+3£©}+¡­+\frac{1}{2n£¨2n+1£©}$
=$\frac{1}{n+1}-\frac{1}{2n+1}=\frac{n}{{2{n^2}+3n+1}}=\frac{1}{{£¨2n+\frac{1}{n}£©+3}}$£®
Áî$f£¨x£©=2x+\frac{1}{x}$£¨x¡Ý1£©£¬Ôò$f'£¨x£©=2-\frac{1}{x^2}¡Ý2-1£¾0$£¬
ËùÒÔf£¨x£©ÔÚ[1£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
¹Êµ±x=1ʱ£¬f£¨x£©È¡µÃ×îСֵ3£¬¼´µ±n=1ʱ£¬${£¨{b_n}£©_{max}}=\frac{1}{6}$£®
${t^2}-2mt+\frac{1}{6}£¾{b_n}$£¨?n¡ÊN*£¬?m¡Ê[-1£¬1]£©$?{t^2}-2mt+\frac{1}{6}£¾{£¨{b_n}£©_{max}}=\frac{1}{6}$£¬
¼´t2-2mt£¾0£¨?m¡Ê[-1£¬1]£©$?\left\{\begin{array}{l}{t^2}-2t£¾0\\{t^2}+2t£¾0\end{array}\right.$£®
½âÖ®µÃ£¬ÊµÊýtµÄÈ¡Öµ·¶Î§Îª£¨-¡Þ£¬-2£©¡È£¨2£¬+¡Þ£©£®

µãÆÀ ¿¼²éÊýÁеÄͨÏʽµÄÇ󷨣¬¿¼²éʵÊýµÄÈ¡Öµ·¶Î§µÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒ⺯ÊýÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Éè±äÁ¿x£¬yÂú×ãÔ¼ÊøÌõ¼þ£º$\left\{\begin{array}{l}{x+y¡Ý3}\\{x-y¡Ý-1}\\{2x-y¡Ü3}\end{array}\right.$£¬ÔòÄ¿±êº¯ÊýÇÒax+y=zµÄ×îСֵΪ$\frac{1}{2}$ʱʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ$\left\{{-\frac{1}{4}}\right\}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖª$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬|F1F2|=2$\sqrt{5}$£¬µãPÔÚÍÖÔ²ÉÏ£¬tan¡ÏPF2F1=2£¬ÇÒ¡÷PF1F2µÄÃæ»ýΪ4£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©µãMÊÇÍÖÔ²ÉÏÈÎÒâÒ»µã£¬A1¡¢A2·Ö±ðÊÇÍÖÔ²µÄ×ó¡¢ÓÒ¶¥µã£¬Ö±ÏßMA1£¬MA2ÓëÖ±Ïßx=$\frac{3\sqrt{5}}{2}$·Ö±ð½»ÓÚE£¬FÁ½µã£¬ÊÔÖ¤£ºÒÔEFΪֱ¾¶µÄÔ²½»xÖáÓÚ¶¨µã£¬²¢Çó¸Ã¶¨µãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Ë«ÇúÏß$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{12}$=1µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®2$\sqrt{3}$B£®$\sqrt{7}$C£®$\sqrt{3}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÍÖÔ²$\frac{x^2}{25}+\frac{y^2}{9}=1$µÄÁ½¸ö½¹µã·Ö±ðΪF1£¬F2£¬µãPÊÇÍÖÔ²ÉÏÈÎÒâÒ»µã£¬Èô|PF1|=4£¬Ôò|PF2|=£¨¡¡¡¡£©
A£®1B£®2C£®4D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Ò»Ö±½ÇÌÝÐεÄÖ±¹ÛͼÊÇÒ»¸öÈçͼËùʾµÄÌÝÐΣ¬ÇÒOA¡ä=2£¬B¡äC¡ä=OC¡ä=1£¬Ôò¸ÃÖ±½ÇÌÝÐεÄÃæ»ýΪ£¨¡¡¡¡£©
A£®2B£®3C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÁ½ÌõÖ±Ïßl1£º2x+y-2=0Óël2£º2x-my+4=0
£¨1£©ÈôÖ±Ïßl1¡Íl2£¬ÇóÖ±Ïßl1Óël2½»µãPµÄ×ø±ê£»
£¨2£©ÈôÖ±Ïßl1¡Îl2£¬ÇóʵÊýmµÄÖµÒÔ¼°Á½Ö±Ïß¼äµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Éè$f£¨x£©=\frac{ax}{x+a}£¨{a£¾0}£©$£¬Áîa1=1£¬an+1=f£¨an£©£¬ÓÖ${b_n}={a_n}•{a_{n+1}}£¬n¡Ê{N^*}$£®
£¨1£©Ö¤Ã÷£ºÊýÁÐ$\left\{{\frac{1}{a_n}}\right\}$ΪµÈ²îÊýÁУ¬²¢ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Éèm£¬nÊÇÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á£¬¦ÂÊÇÁ½¸ö²»Í¬µÄƽÃ棬ÇÒm?¦Á£¬n?¦Â£¬ÏÂÁÐÃüÌâÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èô¦Á¡Í¦Â£¬Ôòm¡ÍnB£®Èô¦Á¡Î¦Â£¬Ôòm¡ÎnC£®Èôm¡Ín£¬Ôò¦Á¡Í¦ÂD£®Èôn¡Í¦Á£¬Ôò¦Á¡Í¦Â

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸