精英家教网 > 高中数学 > 题目详情
1.在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=$\sqrt{3}$,BC=PA=1,E为PD的中点,点N在面PAC内,且NE⊥平面PAC,则点N到AB的距离为$\frac{\sqrt{10-4\sqrt{3}}}{4}$.

分析 以A为原点,AB为x轴,AD为y轴,AP为z轴,建立如图所示的空间直角坐标系,利用向量法能求出点N到AB的距离.

解答 解:以A为原点,AB为x轴,AD为y轴,AP为z轴,建立如图所示的空间直角坐标系,
则A(0,0,0),B($\sqrt{3}$,0,0),C($\sqrt{3},1,0$),D(0,1,0)、P(0,0,1),E(0,$\frac{1}{2},\frac{1}{2}$),
由于点N在侧面PAC内,故可设N(x,x,z),
则$\overrightarrow{NE}$=(-x,$\frac{1}{2}-x,\frac{1}{2}-z$),$\overrightarrow{AP}$=(0,0,1),$\overrightarrow{AC}$=($\sqrt{3},1,0$),$\overrightarrow{PC}$=($\sqrt{3},1,-1$),
∵NE⊥平面PAC,
∴$\left\{\begin{array}{l}{\overrightarrow{NE}•\overrightarrow{AP}=\frac{1}{2}-z=0}\\{\overrightarrow{NE}•\overrightarrow{AC}=-\sqrt{3}x+\frac{1}{2}-x=0}\\{\overrightarrow{NE}•\overrightarrow{PC}=-\sqrt{3}x+\frac{1}{2}-x-(\frac{1}{2}-z)=0}\end{array}\right.$,
∴x=$\frac{\sqrt{3}-1}{4}$,z=$\frac{1}{2}$,∴N($\frac{\sqrt{3}-1}{4}$,$\frac{\sqrt{3}-1}{4}$,$\frac{1}{2}$),
$\overrightarrow{AB}$=($\sqrt{3},0,0$),$\overrightarrow{AN}$=($\frac{\sqrt{3}-1}{4}$,$\frac{\sqrt{3}-1}{4}$,$\frac{1}{2}$),
∴点N到AB的距离d=|$\overrightarrow{AN}$|•$\sqrt{1-[cos<\overrightarrow{AB},\overrightarrow{AN}>]^{2}}$=$\frac{\sqrt{3-\sqrt{3}}}{2}$•$\sqrt{1-(\frac{\frac{3-\sqrt{3}}{4}}{\frac{\sqrt{3-\sqrt{3}}}{2}•\sqrt{3}})^{2}}$=$\frac{\sqrt{10-4\sqrt{3}}}{4}$.
故答案为:$\frac{\sqrt{10-4\sqrt{3}}}{4}$.

点评 本题考查点到直线的距离的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∠BAC=90°,AB=AC=2,$A{A_1}=\sqrt{3}$.M,N分别为BC和AA1的中点,P为侧棱BB1上的动点.
(Ⅰ)求证:平面APM⊥平面BB1C1C;
(Ⅱ)若P为线段BB1的中点,求证:CN∥平面AMP;
(Ⅲ)试判断直线BC1与PA能否垂直.若能垂直,求出PB的值;若不能垂直,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知P(x,y)为区域$\left\{\begin{array}{l}{{y}^{2}-4{x}^{2}≤0}\\{0≤x≤a}\end{array}\right.$内的任意一点,当该区域的面积为2时,z=x+2y的最大值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数与函数y=x相等的是(  )
A.$y={({\sqrt{x}})^2}$B.$y=\sqrt{x^2}$C.$y={({\root{3}{x}})^3}$D.$y=\frac{x^2}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线2x+ay=2与ax+(a+4)y=1垂直,则a的值为0或-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.当双曲线M:$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{2m+6}$=1(-2≤m<0)的焦距取得最小值时,双曲线M的渐近线方程为(  )
A.y=±$\sqrt{2}$xB.y=±$\frac{\sqrt{2}}{2}$xC.y=±2xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=$\frac{3+i}{1-i}$,则$\overline{z}$的模长为(  )
A.$\sqrt{5}$B.5C.4D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若x是方程${2^x}-\frac{3}{{{2^{x-1}}}}=5$的解,化简:|x-3|+x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(1,0)$,$\overrightarrow c=(3,4)$,若λ为实数,$(\overrightarrow a+λ\overrightarrow b)⊥\overrightarrow c$,则λ=(  )
A.$\frac{5}{3}$B.$\frac{1}{2}$C.$-\frac{5}{2}$D.$-\frac{11}{3}$

查看答案和解析>>

同步练习册答案