分析 以A为原点,AB为x轴,AD为y轴,AP为z轴,建立如图所示的空间直角坐标系,利用向量法能求出点N到AB的距离.
解答 解:以A为原点,AB为x轴,AD为y轴,AP为z轴,建立如图所示的空间直角坐标系,
则A(0,0,0),B($\sqrt{3}$,0,0),C($\sqrt{3},1,0$),D(0,1,0)、P(0,0,1),E(0,$\frac{1}{2},\frac{1}{2}$),
由于点N在侧面PAC内,故可设N(x,x,z),
则$\overrightarrow{NE}$=(-x,$\frac{1}{2}-x,\frac{1}{2}-z$),$\overrightarrow{AP}$=(0,0,1),$\overrightarrow{AC}$=($\sqrt{3},1,0$),$\overrightarrow{PC}$=($\sqrt{3},1,-1$),
∵NE⊥平面PAC,
∴$\left\{\begin{array}{l}{\overrightarrow{NE}•\overrightarrow{AP}=\frac{1}{2}-z=0}\\{\overrightarrow{NE}•\overrightarrow{AC}=-\sqrt{3}x+\frac{1}{2}-x=0}\\{\overrightarrow{NE}•\overrightarrow{PC}=-\sqrt{3}x+\frac{1}{2}-x-(\frac{1}{2}-z)=0}\end{array}\right.$,
∴x=$\frac{\sqrt{3}-1}{4}$,z=$\frac{1}{2}$,∴N($\frac{\sqrt{3}-1}{4}$,$\frac{\sqrt{3}-1}{4}$,$\frac{1}{2}$),
$\overrightarrow{AB}$=($\sqrt{3},0,0$),$\overrightarrow{AN}$=($\frac{\sqrt{3}-1}{4}$,$\frac{\sqrt{3}-1}{4}$,$\frac{1}{2}$),
∴点N到AB的距离d=|$\overrightarrow{AN}$|•$\sqrt{1-[cos<\overrightarrow{AB},\overrightarrow{AN}>]^{2}}$=$\frac{\sqrt{3-\sqrt{3}}}{2}$•$\sqrt{1-(\frac{\frac{3-\sqrt{3}}{4}}{\frac{\sqrt{3-\sqrt{3}}}{2}•\sqrt{3}})^{2}}$=$\frac{\sqrt{10-4\sqrt{3}}}{4}$.
故答案为:$\frac{\sqrt{10-4\sqrt{3}}}{4}$.
点评 本题考查点到直线的距离的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $y={({\sqrt{x}})^2}$ | B. | $y=\sqrt{x^2}$ | C. | $y={({\root{3}{x}})^3}$ | D. | $y=\frac{x^2}{x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=±$\sqrt{2}$x | B. | y=±$\frac{\sqrt{2}}{2}$x | C. | y=±2x | D. | y=±$\frac{1}{2}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{5}$ | B. | 5 | C. | 4 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{5}{3}$ | B. | $\frac{1}{2}$ | C. | $-\frac{5}{2}$ | D. | $-\frac{11}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com