【题目】若数列满足:对于任意,均为数列中的项,则称数列为“数列”.
(1)若数列的前项和,,试判断数列是否为“数列”?说明理由;
(2)若公差为的等差数列为“数列”,求的取值范围;
(3)若数列为“数列”,,且对于任意,均有,求数列的通项公式.
【答案】(1)不是,见解析(2)(3)
【解析】
(1)利用递推关系求出数列的通项公式,进一步验证时,是否为数列中的项,即可得答案;
(2)由题意得,再对公差进行分类讨论,即可得答案;
(3)由题意得数列为等差数列,设数列的公差为,再根据不等式得到公差的值,即可得答案;
(1)当时,
又,所以.
所以
当时,,而,
所以时,不是数列中的项,故数列不是为“数列”
(2)因为数列是公差为的等差数列,
所以.
因为数列为“数列”
所以任意,存在,使得,即有.
①若,则只需,使得,从而得是数列中的项.
②若,则.此时,当时,不为正整数,所以不符合题意.综上,.
(3)由题意,所以,
又因为,且数列为“数列”,
所以,即,所以数列为等差数列.
设数列的公差为,则有,
由,得,
整理得,①
.②
若,取正整数,
则当时,,
与①式对应任意恒成立相矛盾,因此.
同样根据②式可得,
所以.又,所以.
经检验当时,①②两式对应任意恒成立,
所以数列的通项公式为.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数),以该直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)分别求曲线的极坐标方程和曲线的直角坐标方程;
(Ⅱ)设直线交曲线于,两点,交曲线于,两点,求的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:()的一个焦点为,点在C上.
(1)求椭圆C的方程;
(2)过点且斜率不为0的直线l与椭圆C相交于M,N两点,椭圆长轴的两个端点分别为,,与相交于点Q,求证:点Q在某条定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.回归直线至少经过其样本数据中的一个点
B.从独立性检验可知有99%的把握认为吃地沟油与患胃肠癌有关系时,我们就说如果某人吃地沟油,那么他有99%可能患胃肠癌
C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高
D.将一组数据的每一个数据都加上或减去同一个常数后,其方差也要加上或减去这个常数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的参数方程为(为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)若过点的直线与交于,两点,与交于,两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】石嘴山市第三中学高三年级统计学生的最近20次数学周测成绩(满分150分),现有甲乙两位同学的20次成绩如茎叶图所示:
(1)根据茎叶图求甲乙两位同学成绩的中位数,并将同学乙的成绩的频率分布直方图填充完整;
(2)根据茎叶图比较甲乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可);
(3)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,记事件为“其中2个成绩分别属于不同的同学”,求事件发生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com