精英家教网 > 高中数学 > 题目详情
20.已知F1、F2是椭圆的两个焦点,A是椭圆短轴的一个端点,若△A F1F2是正三角形,则这个椭圆的离心率是$\frac{1}{2}$.

分析 根据题意可得:正三角形的边长为2c,所以b=$\sqrt{3}$c,可得a=$\sqrt{{c}^{2}+{b}^{2}}$=2c,进而根据a与c的关系求出离心率.

解答 解:因为以F1F2为边作正三角形,
所以正三角形的边长为2c,
又因为正三角形的第三个顶点恰好是椭圆短轴的一个端点,
所以b=$\sqrt{3}$c,
所以a=$\sqrt{{c}^{2}+{b}^{2}}$=2c,
所以e=$\frac{c}{a}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查椭圆的性质和应用,解题时要认真审题,仔细解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.命题:“存在一个椭圆,其离心率e<1”的否定是(  )
A.任意椭圆的离心率e≥1B.存在一个椭圆,其离心率e≥1
C.任意椭圆的离心率e>1D.存在一个椭圆,其离心率e>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,已知长方体ABCD-A1B1C1D1的体积为6,∠C1BC的正切值为$\frac{1}{3}$,当AB+AD+AA1的值最小时,长方体ABCD-A1B1C1D1外接球的表面积(  )
A.10πB.12πC.14πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线x+y-1=0与直线x-2y-4=0的交点坐标为(  )
A.(2,1)B.(2,-1)C.(-1,2)D.(-1,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.甲、乙、丙、丁四个小朋友正在教室里玩耍,忽听“砰”的一声,讲台上的花盆被打破了,甲说:“是乙不小心闯的祸”乙说:“是丙闯的祸”,丙说:“乙说的不是实话.”丁说:“反正不是我闯的祸.”如果刚才四个小朋友中只有一个人说了实话,那么这个小朋友是丙.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在数列{an}中,其前其前n项和为Sn,且满足${S_n}={n^2}+n({n∈{N^*}})$,则an=2n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图1,在△ABC中,$|\overrightarrow{AB}|=2$,$|\overrightarrow{AC}|=1$,点D是BC的中点.
( I)求证:$\overrightarrow{AD}=\frac{{\overrightarrow{AB}+\overrightarrow{AC}}}{2}$;
( II)直线l过点D且垂直于BC,E为l上任意一点,求证:$\overrightarrow{AE}•(\overrightarrow{AB}-\overrightarrow{AC})$为常数,并求该常数;
( III)如图2,若$cos=\frac{3}{4}$,F为线段AD上的任意一点,求$\overrightarrow{AF}•(\overrightarrow{FB}+\overrightarrow{FC})$的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,该几何体是一个由直三棱柱ADE-BCF和一个正四棱锥P-ABCD组合而成,AD⊥AF,AE=AD=2
(1)证明:平面PAD⊥平面ABFE;
(2)若正四棱锥P-ABCD的体积是三棱锥P-ABF体积的4倍,求正四棱锥P-ABCD的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.圆心在直线$y=\frac{1}{3}x$上的圆C与y轴的正半轴相切,圆C截x轴所得的弦长为$4\sqrt{2}$,则圆C的标准方程为(  )
A.(x-3)2+(y-1)2=9B.(x+3)2+(y+1)2=9C.${({x-4})^2}+{({y-\frac{4}{3}})^2}=16$D.(x-6)2+(y-2)2=9

查看答案和解析>>

同步练习册答案