精英家教网 > 高中数学 > 题目详情

【题目】已知函数

I)求曲线在点处的切线方程.

(Ⅱ)若直线为曲线的切线,且经过原点,求直线的方程及切点坐标.

【答案】(Ⅰ)4xy180(Ⅱ)y13x切点为(﹣2,﹣26

【解析】

(Ⅰ)求得函数的导数3x2+1,求得在点切线的斜率和切点的坐标,即可求解切线的方程;

(Ⅱ)设切点为(mn),求得切线的斜率为1+3m2,根据切线过原点,列出方程,求得的值,进而可求得切线的方程.

(Ⅰ)由题意,函数fx)=x3+x16的导数为3x2+1,得

即曲线yfx)在点(1f1))处的切线斜率为4,且切点为(1,﹣14),

所以切线方程为y+144x1),即为4xy180

(Ⅱ)设切点为(mn),可得切线的斜率为1+3m2

又切线过原点,可得1+3m2,解得m=﹣2

即切点为(﹣2,﹣26),所以切线方程为y+2613x+2),即y13x

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C (a>b>0)的一个顶点为A(2,0),离心率为.直线yk(x-1)与椭圆C交于不同的两点MN.

(1)求椭圆C的方程;

(2)当△AMN的面积为时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB是椭圆C1长轴的两个端点,若C上存在点M满足∠AMB120°,则m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面分别是的中点,.

(1)求二面角的余弦值;

(2)点是线段上的动点,当直线所成的角最小时,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 是函数的导函数,则的图象大致是( )

A. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/8f50d3dfba9b485fac00e42a95909498.png] B. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/74ae44978a70424c961e850ed79072da.png]

C. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/2f113f7ec5294ba0bbd1f66b13f3e152.png] D. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/dbaa9025ccdb497380b769e5396c4c19.png]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一款击鼓小游戏规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得50分,没有出现音乐则扣除150分(即获得-150分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.

(Ⅰ)玩一盘游戏,至少出现一次音乐的概率是多少?

(Ⅱ)设每盘游戏获得的分数为,求的分布列;

(Ⅲ)许多玩过这款游戏的人都发现,玩的盘数越多,分数没有增加反而减少了.请运用概率统计的相关知识分析其中的道理.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系,曲线的参数方程为为参数,).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线

(1)说明是哪种曲线,并将的方程化为极坐标方程;

(2)已知的交于两点,且过极点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,分别是的中点.

(1)设棱的中点为,证明: 平面

(2)若,且平面平面,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项是正数的数列的前n项和为

(1)若nN*,n≥2),

①求数列的通项公式

②若对任意恒成立求实数的取值范围

(2)数列是公比为qq>0, q1)的等比数列,且{an}的前n.若存在正整数k,对任意nN*,使得为定值求首项的值

查看答案和解析>>

同步练习册答案