精英家教网 > 高中数学 > 题目详情
在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,D,E,F分别是棱AB,BC,CP的中点,AB=AC=1,PA=2,则直线PA与平面DEF所成角的正弦值为________.
以A为原点,AB,AC,AP所在直线分别为x轴、y轴、z轴建立空间直角坐标系,由AB=AC=1,PA=2,得A(0,0,0),B(1,0,0),C(0,1,0),P(0,0,2),D(,0,0),E,F

=(0,0,2),,设面DEF的法向量为n=(x,y,z).
则由取z=1,则n=(2,0,1),设PA与平面DEF所成角为θ,则sin θ=.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥O—ABCD中,底面ABCD是边长为1的正方形,OA⊥底面ABCD,OA=2,M为OA中点。

(1)求证:直线BD⊥平面OAC;
(2)求直线MD与平面OAC所成角的大小;
(3)求点A到平面OBD的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱(侧棱和底面垂直的棱柱)中,,,且满足.

(1)求证:平面侧面
(2)求二面角的平面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在多面体ABCD-A1B1C1D1中,上、下两个底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.

(1)求异面直线AB1与DD1所成角的余弦值;
(2)已知F是AD的中点,求证:FB1⊥平面BCC1B1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥P—ABCD中,ABAD,CDAD,PA底面ABCD,PA=AD=CD=2AB=2,M为PC的中点。

(1)求证:BM∥平面PAD;
(2)在侧面PAD内找一点N,使MN平面PBD;
(3)求直线PC与平面PBD所成角的正弦。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,平面底面的中点.

(1)求证://平面
(2)求与平面BDE所成角的余弦值;
(3)线段PC上是否存在一点M,使得AM⊥平面PBD,如果存在,求出PM的长度;如果不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过正方形ABCD的顶点A,引PA⊥平面ABCD.若PABA,则平面ABP和平面CDP所成的二面角的大小是(  ).
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点A(1,1,1),点B(-3,-3,-3),则线段AB的长为
A.4B.2C.4D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面向量不共线,且两两之间的夹角都相等,若,则 与的夹角是    ▲  .

查看答案和解析>>

同步练习册答案