精英家教网 > 高中数学 > 题目详情
设平面内的向量
OA
=(1,7)
OB
=(5,1)
OM
=(2,1)
,点P是直线OM上的一个动点,求当
PA
PB
取最小值时,
OP
的坐标及∠APB的余弦值.
分析:可设
OP
=(x,y),由
OP
OM
共线可得x=2y,进而可得
PA
PB
=5y2-20y+12,可知当y=2时取最小值,可得
OP
的坐标,而∠APB的余弦值等于
PA
PB
|
PA
||
PB
|
,代入坐标可求.
解答:解:由题意,可设
OP
=(x,y),∵点P在直线OM上,
OP
OM
共线,而
OM
=(2,1)

∴x-2y=0,即x=2y,故
OP
=(2y,y),
PA
=
OA
-
OP
=(1-2y,7-y),
PB
=
OB
-
OP
=(5-2y,1-y),
所以
PA
PB
=(1-2y)(5-2y)+(7-y)(1-y)=5y2-20y+12,
当y=-
-20
2×5
=2时,
PA
PB
=5y2-20y+12取最小值-8,
此时
OP
=(4,2),
PA
=(-3,5),
PB
=(1,-1),
∴cos∠APB=
PA
PB
|
PA
||
PB
|
=
-8
34
2
=-
4
17
17
点评:本题考查向量共线的条件,向量的坐标运算,数量积的坐标表示,向量的模的求法及利用数量积计算夹角的余弦,综合性强,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设平面内的向量
OA
=(-1,-3)
OB
=(5,3)
OM
=(2,2)
,点P在直线OM上,且
PA
PB
=16

(Ⅰ)求
OP
的坐标;
(Ⅱ)求∠APB的余弦值;
(Ⅲ)设t∈R,求|
OA
+t
OP
|
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设平面内的向量
OA
=(1,7)
OB
=(5,1)
OM
=(2,1)
,点P是直线OM上的一个动点,且
PA
PB
=-8
,求
OP
的坐标及∠APB的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设平面内的向量
OA
=(1,7)
OB
=(5,1)
OM
=(2,1)
,点P是直线OM上的一个动点,求当
PA
PB
取最小值时,
OP
的坐标及∠APB的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设平面内的向量
OA
=(-1,-3)
OB
=(5,3)
OM
=(2,2)
,点P在直线OM上,且
PA
PB
=16

(Ⅰ)求
OP
的坐标;
(Ⅱ)求∠APB的余弦值;
(Ⅲ)设t∈R,求|
OA
+t
OP
|
的最小值.

查看答案和解析>>

同步练习册答案