精英家教网 > 高中数学 > 题目详情
三棱柱ABC-A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为________. 

试题分析:设,棱长为1,则
因为,    
所以
所以
所以,所以异面直线所成角的余弦值为
点评:本题主要考查了空间向量在解决立体几何问题中的应用,空间向量基本定理,向量数量积运算的性质及夹角公式的应用,有一定的运算量.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(如图),具有公共轴的两个直角坐标平面所成的二面角等于.已知内的曲线的方程是,求曲线内的射影的曲线方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为两条不重合的直线,为两个不重合的平面,下列命题中正确命题的是
A.若所成的角相等,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直三棱柱中,分别是棱上的点(点 不同于点),且的中点.

求证:(1)平面平面
(2)直线平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
如图所示是一个半圆柱与三棱柱的组合体,其中,圆柱的轴截面是边长为4的正方形,为等腰直角三角形,.

试在给出的坐标纸上画出此组合体的三视图.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.

(Ⅰ)求证:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,平面,且,给出下列命题
(1)若,则    (2)若,则
(3)若,则  (4)若,则
其中正确的命题个数是( )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)如右图,简单组合体ABCDPE,其底面ABCD为边长为的正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC=.

(1)若N为线段PB的中点,求证:EN//平面ABCD;
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果一条直线垂直于一个平面内的①三角形的两边;②梯形的两边;③圆的两条直径;④正六边形的两条边,则能保证该直线与平面垂直的是(  )
A.①③    B.②C.②④D.①②④

查看答案和解析>>

同步练习册答案