【题目】为美化环境,某市计划在以、两地为直径的半圆弧上选择一点建造垃圾处理厂(如图所示).已知、两地的距离为,垃圾场对某地的影响度与其到该地的距离有关,对、两地的总影响度对地的影响度和对地影响度的和.记点到地的距离为,垃圾处理厂对、两地的总影响度为.统计调查表明:垃圾处理厂对地的影响度与其到地距离的平方成反比,比例系数为;对地的影响度与其到地的距离的平方成反比,比例系数为.当垃圾处理厂建在弧的中点时,对、两地的总影响度为.
(1)将表示成的函数;
(2)判断弧上是否存在一点,使建在此处的垃圾处理厂对、两地的总影响度最小?若存在,求出该点到地的距离;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】某中学为了解高一年级学生身高发育情况,对全校名高一年级学生按性别进行分层抽样检查,测得身高(单位:)频数分布表如表、表.
表:男生身高频数分布表
身高/ | ||||||
频数 |
表:女生身高频数分布表
身高/ | ||||||
频数 |
(1)求该校高一女生的人数;
(2)估计该校学生身高在的概率;
(3)以样本频率为概率,现从高一年级的男生和女生中分别选出人,设表示身高在学生的人数,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= ,关于x的方程[f(x)]2+mf(x)﹣1=0有三个不同的实数解,则实数m的取值范围是( )
A.(﹣∞,e﹣ )
B.(e﹣ ,+∞)
C.(0,e)
D.(1,e)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知圆的参数方程为(为参数),若是圆与轴正半轴的交点,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,设过点的圆的切线为.
(1)求直线的极坐标方程;
(2)求圆上到直线的距离最大的点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
储蓄存款y (千亿元) | 5 | 6 | 7 | 8 | 10 |
为了研究计算的方便,工作人员将上表的数据进行了处理,得到下表2:
时间代号t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(1)求z关于t的线性回归方程;
(2)通过(1)中的方程,求出y关于x的回归方程;
(3)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}的前n项和记为Sn且满足Sn=2an﹣1,n∈N*;
(1)求数列{an}的通项公式;
(2)设Tn=a1a2﹣a2a3+a3a4﹣a4a5+…+(﹣1)n+1anan+1 , 求{Tn}的通项公式;
(3)设有m项的数列{bn}是连续的正整数数列,并且满足:lg2+lg(1+ )+lg(1+ )+…+lg(1+ )=lg(log2am).
问数列{bn}最多有几项?并求出这些项的和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)的表达式为f(x)= (c≠0),则函数f(x)的图象的对称中心为(﹣ , ),现已知函数f(x)= ,数列{an}的通项公式为an=f( )(n∈N),则此数列前2017项的和为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com