精英家教网 > 高中数学 > 题目详情

  (本题满分12分) 如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形

(1)求证:

(2)设线段的中点为,在直线 上是否存在一点,使得?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;

(3)求二面角正切值的大小。

      

 

【答案】

(1)略

(2)略

(3)二面角正切值为

【解析】解:(Ⅰ)因为平面ABEF⊥平面ABCD,BC平面ABCD,BC⊥AB,平面ABEF∩平面ABCD=AB,

所以BC⊥平面ABEF.

所以BC⊥EF. ……………………………………2分

因为⊿ABE为等腰直角三角形,AB=AE,

所以∠AEB=45°,

又因为∠AEF=45,

所以∠FEB=90°,即EF⊥BE. …………………3分

因为BC平面ABCD, BE平面BCE,

BC∩BE=B

所以   …………………………4分(II)取BE的中点N,连结CN,MN,则MNPC

∴PMNC为平行四边形,所以PM∥CN.             ………6分   

∵CN在平面BCE内,PM不在平面BCE内,PM∥平面BCE  ………8分         

(III)由EA⊥AB,平面ABEF⊥平面ABCD,易知EA⊥平面ABCD.

作FG⊥AB,交BA的延长线于G,则FG∥EA.从而FG⊥平面ABCD,

作GH⊥BD于H,连结FH,则由三垂线定理知BD⊥FH.

∴  ∠FHG为二面角F-BD-A的平面角. …………………10分

∵  FA=FE,∠AEF=45°,∠AEF=90°, ∠FAG=45°.

设AB=1,则AE=1,AF=,则

在Rt⊿BGH中, ∠GBH=45°,BG=AB+AG=1+=,

,                                         

在Rt⊿FGH中, ,

∴  二面角正切值为    ………………12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)已知数列是首项为,公比的等比数列,,

,数列.

(1)求数列的通项公式;(2)求数列的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题

(本题满分12分,第1小题6分,第2小题6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB

(2) 若,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题

(本题满分12分)

设函数为常数),且方程有两个实根为.

(1)求的解析式;

(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题

(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)

如图所示,直二面角中,四边形是边长为的正方形,上的点,且⊥平面

(Ⅰ)求证:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求点到平面的距离.

 

查看答案和解析>>

同步练习册答案