精英家教网 > 高中数学 > 题目详情

【题目】已知函数,若关于的方程有四个不相等的实数根,则实数的取值范围是_________.

【答案】

【解析】

方程有四个不相等的实数根,即方程有四个不相等的实数根,则有四个不相等的实数根,结合图象利用分类讨论的根的情况,其中当时分别构造函数分析,最后由转化思想将函数有两个零点转化为小于0构造不等式求得答案.

方程有四个不相等的实数根,即方程有四个不相等的实数根,则有四个不相等的实数根,

因为函数

对方程的根分析,令

由图象分析可知,当时,必有一根,

时,令,则,所以函数单调递增,故,所以当时,方程无根,

故方程只有1个根,那么方程应有3个根,

对方程的根分析,令

由图象分析可知,当时,必有一根,

时,方程应有2两个不等的实根,其等价于方程2个不等的实根,

,则,且其在内有两个零点,

显然当,函数单调递增,不满足条件,则

,则函数在区间上单调递减,在区间 单调递增;

所以函数取得极小值,同时也为最小值,

函数若要有两个零点,则

综上所述,实数的取值范围是.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的参数方程为为参数).在以坐标原点为极点,轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线的极坐标方程是.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)设点.若直与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:

甲:82 81 79 78 95 88 93 84

乙:92 95 80 75 83 80 90 85

1)用茎叶图表示这两组数据;

2)现要从中选派一人参加数学竞赛,从统计学的角度(平均数、方差)考虑,你认为选派哪位同学参加合适?请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则以下结论正确的是(

A.函数的单调减区间是

B.函数有且只有1个零点

C.存在正实数,使得成立

D.对任意两个正实数,且,若

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试.公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训,甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如下表,其中第一、二周达标的员工评为优秀.

第一周

第二周

第三周

第四周

甲组

20

25

10

5

乙组

8

16

20

16

(1)在甲组内任选两人,求恰有一人优秀的概率;

(2)每个员工技能测试是否达标相互独立,以频率作为概率.

(i)设公司员工在方式一、二下的受训时间分别为,求的分布列,若选平均受训时间少的,则公司应选哪种培训方式?

(ii)按(i)中所选方式从公司任选两人,求恰有一人优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知直线l过点P22.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρρcos2θ4cosθ0.

1)求C的直角坐标方程;

2)若lC交于AB两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数图象上不同两点处的切线的斜率分别是,规定为线段的长度)叫做曲线在点与点之间的“弯曲度”,给出以下命题:

①函数图象上两点的横坐标分别为,则

②存在这样的函数,其图象上任意不同两点之间的“弯曲度”为常数;

③设,是抛物线上不同的两点,则

④设, 是曲线是自然对数的底数)上不同的两点,则

其中真命题的个数为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为的样本,得到一周参加社区服务的时间的统计数据好下表:

超过1小时

不超过1小时

20

8

12

m

(Ⅰ)求

(Ⅱ)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?

(Ⅲ)以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,现从该校学生中随机调查6名学生,试估计6名学生中一周参加社区服务时间超过1小时的人数.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市民用水拟实行阶梯水价,每人用水量中不超过立方米的部分按4/立方米收费,超出立方米的部分按10/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:

1)如果为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4/立方米, 至少定为多少?

2)假设同组中的每个数据用该组区间的右端点值代替,当时,估计该市居民该月的人均水费.

查看答案和解析>>

同步练习册答案