【题目】已知函数
(I)当时,求的单调区间;
(Ⅱ)若函数在上单调递增,试求出的取值范围.
【答案】(Ⅰ)单调递增区间是,单调递减区间是和.(Ⅱ) .
【解析】试题分析:(1)先求导数,再求导函数零点,列表分析导函数符号变化规律,最后根据导函数符号确定单调区间,(2)由题意得在区间恒成立,再变量分离得,最后根据二次函数性质求最值,得的取值范围.
试题解析:(I)当时,函数
令即解得
令解得或
所以当时,函数的单调递增区间是,
单调递减区间是和.
(Ⅱ)法一:
函数在上单调递增,
等价于在区间恒成立,
等价于在区间恒成立.
等价于
令
因为
所以函数在区间上单调递增,
故
所以的取值范围是
法二:
函数在上单调递增,
等价于在区间恒成立,
令
则命题等价于在区间恒成立.
当时,由解得
当时因为函数图像的对称轴
此时只有满足,解得.
综上所述的取值范围是
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形为正方形,四边形为直角梯形, , .
(1)求与平面所成角的正弦值;
(2)线段或其延长线上是否存在点,使平面平面?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的顶点在坐标原点,焦点在轴上,且过点.
(I)求的标准方程;
(Ⅱ)若为坐标原点, 是的焦点,过点且倾斜角为的直线交于, 两点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数是定义在上的偶函数,且对任意的恒有,已知当时,,则下列命题:
①对任意,都有;②函数在上递减,在上递增;
③函数的最大值是1,最小值是0;④当时,.
其中正确命题的序号有________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,已知⊙O的方程x2+y2=4,直线l:x=4,在以O为极点,x轴的正半轴为极轴的极坐标系中,过极点作射线交⊙O于A,交直线l于B.
(1)写出⊙O及直线l的极坐标方程;
(2)设AB中点为M,求动点M的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知锐角△ABC中内角A、B、C所对边的边长分别为a、b、c,满足a2+b2=6abcosC,且 .
(1)求角C的值;
(2)设函数 ,图象上相邻两最高点间的距离为π,求f(A)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将一个半径为3分米,圆心角为α(α∈(0,2π))的扇形铁皮焊接成一个容积为V立方分米的圆锥形无盖容器(忽略损耗).
(1)求V关于α的函数关系式;
(2)当α为何值时,V取得最大值;
(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5分米的球?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com