精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是矩形,平面是等腰三角形,的一个三等分点(靠近点),的延长线交于点,连接

1)求异面直线所成角的余弦值;

2)求二面角的正切值.

【答案】(1)

(2).

【解析】

1)建立空间直角坐标系,设,根据题意确定,找点PDEF坐标,确定直线的方向向量,根据异面直线所成角满足,求解,即可.

2)根据(1)的点坐标,求平面的一个法向量为和平面的一个法向量为.由题意可知二面角为锐角,根据求出,从而计算,即可.

1底面是矩形,平面

为坐标原点,所在直线为轴建立如图所示的空间直角坐标系.

因为的一个三等分点(靠近点),所以

因为是等腰三角形,且,所以

不妨设,则

又由平行线分线段成比例,得,所以

所以点

设异面直线所成角为

所以异面直线所成角的余弦值为

2)建系,求点的坐标同(1),则

设平面的法向量为,则,得

,得平面的一个法向量为

又易知平面的一个法向量为

设二面角的大小为,由题意得为锐角,

所以,则

所以二面角的正切值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】经过多年的运作,双十一抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2018双十一网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在双十一的销售量p万件与促销费用x万元满足(其中a为正常数).已知生产该产品还需投入成本万元(不含促销费用),每一件产品的销售价格定为元,假定厂家的生产能力完全能满足市场的销售需求.

1)将该产品的利润y万元表示为促销费用x万元的函数;

2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若,对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向右平移个单位长度得到的图象,若的对称中心为坐标原点,则关于函数有下述四个结论:

的最小正周期为 ②若的最大值为2,则

有两个零点 在区间上单调

其中所有正确结论的标号是(

A.①③④B.①②④C.②④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若函数的图象经过变换后所得的图象对应的函数与的值域相同,则称变换的同值变换,下面给出了四个函数与对应的变换:①, 将函数的图象关于直线作对称变换;②, 将函数的图象关于轴作对称变换;③, 将函数的图象关于点作对称变换;④将函数的图象关于点作对称变换.其中的同值变换的有__________(写出所有符合题意的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系.若曲线的极坐标方程为点的极坐标为,在平面直角坐标系中,直线经过点,且倾斜角为.

(1)写出曲线的直角坐标方程以及点的直角坐标;

(2)设直线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象向右平移个单位长度,所得图象对应的函数为.

(1)求函数的表达式及其周期;

(2)求函数上的对称轴、对称中心及其单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知向量,设,向量

(1)若,求向量的夹角;

(2)若 对任意实数都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为.

1)求直线的极坐标方程及曲线C的直角坐标方程;

2)若是直线上的一点,是曲线C上的一点,求的最大值.

查看答案和解析>>

同步练习册答案