【题目】如图,在四棱锥中,底面是矩形,平面,是等腰三角形,,是的一个三等分点(靠近点),与的延长线交于点,连接.
(1)求异面直线与所成角的余弦值;
(2)求二面角的正切值.
【答案】(1);
(2).
【解析】
(1)建立空间直角坐标系,设,根据题意确定,,,,,找点P,D,E,F坐标,确定直线与的方向向量,根据异面直线与所成角满足,求解,即可.
(2)根据(1)的点坐标,求平面的一个法向量为和平面的一个法向量为.由题意可知二面角为锐角,根据求出,从而计算,即可.
(1)底面是矩形,平面
,,
以为坐标原点,,,所在直线为,,轴建立如图所示的空间直角坐标系.
因为是的一个三等分点(靠近点),所以,.
因为是等腰三角形,且,所以.
不妨设,则,,,.
又由平行线分线段成比例,得,所以.
所以点,,,,
则,.
设异面直线与所成角为,
则.
所以异面直线与所成角的余弦值为.
(2)建系,求点的坐标同(1),则,.
设平面的法向量为,则,得.
令,得平面的一个法向量为;
又易知平面的一个法向量为.
设二面角的大小为,由题意得为锐角,
所以,则.
所以二面角的正切值为.
科目:高中数学 来源: 题型:
【题目】经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2018年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量p万件与促销费用x万元满足(其中,a为正常数).已知生产该产品还需投入成本万元(不含促销费用),每一件产品的销售价格定为元,假定厂家的生产能力完全能满足市场的销售需求.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数的图象向右平移个单位长度得到的图象,若的对称中心为坐标原点,则关于函数有下述四个结论:
①的最小正周期为 ②若的最大值为2,则
③在有两个零点 ④在区间上单调
其中所有正确结论的标号是( )
A.①③④B.①②④C.②④D.①③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:若函数的图象经过变换后所得的图象对应的函数与的值域相同,则称变换是的同值变换,下面给出了四个函数与对应的变换:①, 将函数的图象关于直线作对称变换;②, 将函数的图象关于轴作对称变换;③, 将函数的图象关于点作对称变换;④,将函数的图象关于点作对称变换.其中是的同值变换的有__________(写出所有符合题意的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系.若曲线的极坐标方程为,点的极坐标为,在平面直角坐标系中,直线经过点,且倾斜角为.
(1)写出曲线的直角坐标方程以及点的直角坐标;
(2)设直线与曲线相交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为.
(1)求直线的极坐标方程及曲线C的直角坐标方程;
(2)若是直线上的一点,是曲线C上的一点,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com