精英家教网 > 高中数学 > 题目详情
如图所示,在长方体ABCDA1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥ABB1D1D的体积为    cm3.
6
连接AC交BD于O,
在长方体ABCDA1B1C1D1中,
∵AB="AD=3" cm,
∴四边形ABCD是正方形,
∴AC⊥BD,且BD=3.
又BB1⊥底面ABCD,
∴AC⊥BB1,
又DB∩BB1=B,
∴AC⊥平面BB1D1D,
即AO的长是点A到平面BB1D1D的距离,
=3×2=6,AO=,
=×6×=6(cm3).边
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图(1)所示,△ABC是等腰直角三角形,AC=BC=4,E、F分别为AC、AB的中点,将△AEF沿EF折起,使A′在平面BCEF上的射影O恰为EC的中点,得到图(2).

(1)求证:EF⊥A′C;
(2)求三棱锥FA′BC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABCA1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.

(1)证明:AB⊥A1C;
(2)若AB=CB=2,A1C=,求三棱柱ABCA1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四面体ABCD中,△ABC与△DBC都是边长为4的正三角形.

(1)求证:BCAD
(2)试问该四面体的体积是否存在最大值?若存在,求出这个最大值及此时棱长AD的大小;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AA1,BB1为圆柱OO1的母线,BC是底面圆O的直径,D,E分别是AA1,CB1的中点,DE⊥面CBB1.

(1)证明:DE∥面ABC;
(2)求四棱锥C­ABB1A1与圆柱OO1的体积比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

中,AB=2BF=4,C,E分别是AB,AF的中点(如下左图).将此三角形沿CE对折,使平面AEC⊥平面BCEF(如下右图),已知D是AB的中点.

(1)求证:CD∥平面AEF;
(2)求证:平面AEF⊥平面ABF;
(3)求三棱锥C-AEF的体积,

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

右图是棱长为2的正方体的表面展开图,则多面体的体积为(      )
A.2B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正方形ABCD的边长为2,E、F分别为BC、DC的中点,沿AE、EF、AF折成一个四面体,使B、C、D三点重合,则这个四面体的体积为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P -ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°.

(1)求四棱锥的体积.
(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.

查看答案和解析>>

同步练习册答案