精英家教网 > 高中数学 > 题目详情
17.(Ⅰ)计算:${8^{\frac{2}{3}}}-\sqrt{{{(\sqrt{2}-1)}^2}}+{2^{\frac{1}{2}}}+{({\frac{1}{3}})^0}-lg100$.
(Ⅱ)已知a>0,且a-a-1=3,求值:a2+a-2

分析 (I)利用指数函数与对数函数的运算性质即可得出.
(II)利用乘法公式、指数运算性质即可得出.

解答 解:(I)原式=${2}^{3×\frac{2}{3}}$-$(\sqrt{2}-1)$+$\sqrt{2}$+1-2=4.
(II)∵a>0,且a-a-1=3,
∴a2+a-2-2=9,解得a2+a-2=11.

点评 本题考查了指数函数与对数函数的运算性质、乘法公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[100,110),[110,120),[120,130)三组内的学生中,用分层抽样的方法选取28人参加一项活动,则从身高在[120,130)内的学生中选取的人数应为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={1,2,3,4},B={0,2,4,6},则A∩B等于(  )
A.{0,1,2,3,4,6}B.{1,3}C.{2,4}D.{0,6}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,则13+23+33+43+53+63=212

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.当x=θ时,函数f(x)=3sinx-cosx取得最小值,则sinθ=$-\frac{{3\sqrt{10}}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知直线2x+ay+1=0与直线x-4y-1=0平行,则a值为-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若数列{an}的前n项和记为Sn,并满足${a_n}=\left\{\begin{array}{l}2n-1,(n=2k-1,k∈{N^*})\\{2^n},(n=2k,k∈{N^*})\end{array}\right.$,则S7=(  )
A.30B.54C.100D.112

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知AB是单位圆O上的一条弦,λ∈R,若$|{\overrightarrow{OA}-λ\overrightarrow{OB}}|$的最小值是$\frac{{\sqrt{3}}}{2}$,则|AB|=1或$\sqrt{3}$,此时λ=$±\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知命题p:?x∈R,使$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$=2,命题q:a=2是函数y=x2-ax+3在区间[1,+∞)递增的充分但不必要条件.给出下列结论:①命题“p∧q”是真命题;
②命题“¬p∧q”是真命题;
③命题“¬p∨q”是真命题;
④命题“p∨¬q”是假命题
其中正确说法的序号是(  )
A.②④B.②③C.②③④D.①②③④

查看答案和解析>>

同步练习册答案