精英家教网 > 高中数学 > 题目详情

【题目】已知集合P={x|-2≤x≤10},Q={x|1-mx≤1+m}.

(1)求集合RP

(2)若PQ,求实数m的取值范围;

(3)若PQQ,求实数m的取值范围.

【答案】(1) RP={x|x<-2或x>10}; (2) [9,+∞);(3)(-∞,3].

【解析】试题分析:(1)根据数轴可得结合补集(2)根据数轴可得实数m满足的条件,解不等式可得m的取值范围;(3)由PQQ得,QP,再分空间与非空讨论,结合数轴可得实数m满足的条件,解不等式可得m的取值范围

试题解析:(1)RP={x|x<-2或x>10};

(2)由PQ,需m≥9,即实数m的取值范围为[9,+∞);

(3)由PQQ得,QP

①当1-m>1+m,即m<0时,Q,符合题意;

②当1-m≤1+m,即m≥0时,需

得0≤m≤3;

综上得:m≤3,即实数m的取值范围为(-∞,3].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(1)若当时,函数的图象恒在直线上方,求实数的取值范围;

(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设铁路长为,且,为将货物从运往,现在上的距点的点处修一公路至,已知单位距离的铁路运费为,公路运费为.

(1)将总运费表示为的函数

(2)如何选点才使总运费

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2016高考四川文科】已知数列{ }的首项为1 为数列的前n项和, ,其中q>0 .

)若 成等差数列,求的通项公式;

)设双曲线 的离心率为 ,且 ,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为

(1)求圆的直角坐标方程;

(2)设圆与直线交于点,若点的坐标为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列函数解析式:

(1)已知是一次函数,且满足3,求

(2)已知,求的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数上的最大值;

(2)令,若在区间上为单调递增函数,求的取值范围;

(3)当时,函数的图象与轴交于两点,又的导函数.若正常数满足条件.证明: <0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中均为实数, 为自然对数的底数.

(I)求函数的极值;

(II)设,若对任意的

恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

(1)求的值;

(2)猜测的单调性,并用定义证明;

(3)若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案