精英家教网 > 高中数学 > 题目详情
已知f(x)是二次函数,若f(0)=3且f(x-1)=f(x)+2x-1,试求f(x)的表达式.
考点:二次函数的性质
专题:函数的性质及应用
分析:设f(x)=ax2+bx+c,利用f(0)=2,且f(x-1)=f(x)+2x-1,建立方程,求出a,b,c,即可得出函数f(x)的表达式;
解答: 解:设f(x)=ax2+bx+c,
∵f(0)=3,且f(x-1)=f(x)+2x-1,
∴c=3,a(x-1)2+b(x-1)+c=ax2+bx+c+2x-1,
∴2a+b=b+2,a-b+c=c-1
∴a=-1,b=2,
∴f(x)=-x2+2x+3.
点评:本题考查了二次函数解析式的求法,利用了待定系数法.属于基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算下列各式:
(Ⅰ)sin(-
26π
3
)-cos(
29π
6
)-tan
25π
4

(Ⅱ)
3
×
31.5
×
612
+(log43+log83)•log32.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos3x,sin3x),
b
=(cosx,-sinx),且x∈[0,
π
4
],求f(x)=λ
a
b
-λ|
a
+
b
|•sin2x(λ≠0)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点(1,
3
2
)且离心率为
3
2

(1)求椭圆C的标准方程;
(2)过椭圆C上一点P向圆O:x2+y2=r2,(r>0)引两条切线,切点分别为A,B
(Ⅰ)若存在点P使∠APB=60°,求r的最大值;
(Ⅱ)在Ⅰ的条件下,过x轴上一点(m,0)做圆O的切线l,交椭圆C于M,N两点,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:2|x-3|+|x-4|<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C对边分别为a、b、c,且2cos(B-C)-1=4cosBcosC.
(Ⅰ)求角A的大小;
(Ⅱ)若a=3,2sinB=sinC,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长为a的正方体ABCD-A1B1C1D1中,P是A1D1的中点,Q是A1B1的任意一点,E、F是CD上的任意两点,且EF的长为定值.给出以下结论:
①异面直线PQ与EF所成的角是定值;
②点P到平面QEF的距离是定值;
③直线PQ与平面PEF所成的角是定值;
④三棱锥P-QEF的体积是定值;以上说法正确的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2(a-1)x+2在(-∞,2)上是减函数,则实数a的取值范围是(  )
A、a≤5B、a≥-1
C、a≤-1D、a≥3

查看答案和解析>>

科目:高中数学 来源: 题型:

记f(P)为双曲线 
x2
a2
-
y2
b2
=1(a>0,b>0)上一点P到它的两条渐近线的距离之和;当P在双曲线上移动时,总有f(P)≥b.则双曲线的离心率的取值范围是(  )
A、(1,
5
4
]
B、(1,
5
3
]
C、(1,2]
D、(1,
3
]

查看答案和解析>>

同步练习册答案