精英家教网 > 高中数学 > 题目详情
11.圆C:(x-1)2+(y+2)2=1关于点P(3,4)对称的圆C′的方程为(x-5)2+(y-10)2=1.

分析 求出圆(x-2)2+(y-1)2=1的圆心坐标和半径,利用中点坐标公式求出对称圆的圆心坐标,即可得到对称圆的方程.

解答 解:圆C:(x-1)2+(y+2)2=1的圆心坐标(1,-2),半径为:1;
(1,-2)关于P(3,4)的对称圆心坐标为:(5,10),
所以对称的圆的方程为:(x-5)2+(y-10)2=1.
故答案为:(x-5)2+(y-10)2=1.

点评 本题是基础题,考查点关于点对称点的求法,对称圆的求法,考查计算能力,注意中点坐标公式的应用,送分题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(2,0),M为椭圆的上顶点,O为坐标原点,且△MOF是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=8,证明:直线AB过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一直线的倾斜角的正弦值为$\frac{5}{13}$,则该直线的斜率为(  )
A.$\frac{5}{12}$B.±$\frac{5}{12}$C.$\frac{12}{5}$D.±$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=$\frac{1}{\sqrt{1-{e}^{x}}}$的定义域是(  )
A.(0,+∞)B.(-∞,0]C.(-∞,0)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知y=f(x)+x2是奇函数,且f(1)=1.若g(x)=f(x)+5,则g(-1)=(  )
A.2B.5C.-1D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=$\frac{2x-3}{5x+2}$的值域为(-∞,$\frac{2}{5}$)∪($\frac{2}{5}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知点A(-1.0),B(1,0),若圆 (x-2)2+y2=r2上存在点P,使得∠APB=90°,则实数r的取值范围为(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.x,y∈R,A={(x,y)|x2+y2=1},B={(x,y)|$\frac{x}{a}$-$\frac{y}{b}$=1,a>0,b>0},当A∩B只有1个元素时,a,b满足的关系式为(  )
A.$\frac{1}{a}$+$\frac{1}{b}$=1B.a2+b2=1C.$\frac{1}{a^2}$+$\frac{1}{b^2}$=1D.a+b=ab

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.右焦点坐标是(2,0),且经过点(-2,-$\sqrt{2}$)的椭圆的标准方程为$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

同步练习册答案