【题目】已知点,动点到直线:的距离为,且,设动点的轨迹为曲线.
(Ⅰ)求曲线的方程;
(Ⅱ)过点作互相垂直的两条直线,分别交曲线于点,和,,若四边形面积为,求直线的方程.
【答案】(Ⅰ);(Ⅱ)和.
【解析】
(Ⅰ)设点,然后根据直接法求解可得曲线方程.(Ⅱ)设出直线的方程为或,然后利用代数法求出和,并根据四边形的面积可求出直线方程中的参数,进而得到直线方程.
(Ⅰ)设,
∵,
∴,
整理得曲线的方程为.
(Ⅱ)解法一:①当直线的斜率为0时,则,,
∴四边形的面积.
②当直线的斜率不为0时,设直线的方程为,
由消去得.
由已知可知恒成立,
设,,
则,,
∴ .
∵直线,互相垂直,
∴以替换上式中的可求得,
∴四边形的面积,
解得,
∴直线的方程为或,
即和.
解法二:①当直线的斜率不存在时,可求出,,,.
∴,,
∴四边形的面积.
②当直线的斜率存在且不为0时,设直线的方程为,
由消去得.
由已知可知恒成立,
设,,
则,.
∴ .
∵直线,互相垂直,
∴用替换上式中的可求得.
∴四边形的面积,
解得,
∴直线的方程为或,
即和.
科目:高中数学 来源: 题型:
【题目】某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:
(1)现从去年的消费金额超过3200元的消费者中随机抽取2人,求至少有1位消费者,其去年的消费者金额在的范围内的概率;
(2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表:
预计去年消费金额在内的消费者今年都将会申请办理普通会员,消费金额在内的消费者都将会申请办理银卡会员,消费金额在内的消费者都将会申请办理金卡会员,消费者在申请办理会员时,需一次性缴清相应等级的消费金额,该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案:
方案1:按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励:
普通会员中的“幸运之星”每人奖励500元;银卡会员中的“幸运之星”每人奖励600元;金卡会员中的“幸运之星”每人奖励800元.
方案二:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球,若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励. 规定每位普通会员均可参加1次摸奖游戏;每位银卡会员均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立)
请你预测哪一种返利活动方案该健身机构的投资较少?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆与直线交于两点,不与轴垂直,圆.
(1)若点在椭圆上,点在圆上,求的最大值;
(2)若过线段的中点且垂直于的直线过点,求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题:
①经过定点的直线都可以用方程表示;
②经过定点的直线都可以用方程表示;
③不经过原点的直线都可以用方程表示;
④经过任意两个不同的点、的直线都可以用方程表示,
其中真命题的个数为( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为(t为参数).直线与曲线分别交于两点.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)若点的极坐标为,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从盛满2升纯酒精的容器里倒出1升纯酒精,然后填满水,再倒出1升混合溶液后又用水填满,以此继续下去,则至少应倒 次后才能使纯酒精体积与总溶液的体积之比低于10%.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形是菱形,是矩形,平面平面,,,,为的中点.
(1)求证:∥平面;
(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com