精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2x+1x+1

(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论;
(2)求该函数在区间[1,4]上的最大与最小值.
分析:(1)任取x1,x2∈[1,+∞),且x1<x2,然后通过化简变形判定f(x1)-f(x2)的符号,从而得到函数的单调性;
(2)根据(1)知函数f(x)在[1,4]上是增函数,将区间端点代入,从而求出函数最值.
解答:解:(1)任取x1,x2∈[1,+∞),且x1<x2
f(x1)-f(x2)=
2x1+1
x1+1
-
2x2+1
x2+1
=
(x1-x2)
(x1+1)(x2+1)

∵x1-x2<0,(x1+1)(x2+1)>0,
所以,f(x1)-f(x2)<0,f(x1)<f(x2),
所以函数f(x)在[1,+∞)上是增函数.
(2)由(1)知函数f(x)在[1,4]上是增函数.
最大值为f(4)=
2×4+1
4+1
=
9
5
,最小值为f(1)=
2×1+1
1+1
=
3
2
点评:本题主要考查了利用定义法证明函数的单调性,以及利用单调性求函数的最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案